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AFIT/GOR/ENS/94M-05
Abstract

This research investigated a heuristic approach to schedule aircraft for the channel
cargo system of the United States Air Force's Air Mobility Command (AMC). Given
cargo/frequeacy of visit requirements, a fleet of aircraft, and possible routes, the objective of
this research was to develop, implement, and test an iterative procedure to efficiently schedule
and load aircraft in order to maximize the flow of cargo through the channel cargo system.
Once a level of flow was established, attempts were made to minimize cost in terms of
cumulative weighted time-in-system (CWTIS). A minimum cost flow heuristic, incorporating
a successive shcrtest path algorithm, was coupled with a critical arc schedule improvement
heuristic. Our procedure iterated between these two heuristics to generate a cargo flow pattern
and aircraft schedule. This research demonstrated the usefulness and efficiency of this
heuristic in planning airlift for the channel cargo system. The FORTRAN programs which
implement the heuristics are compatible with current AMC scheduling/advance planning tools.
Given this compatibility, additional testing in conjunction with AMC's current planning tools
(STORM, CARGPREP, and CARGOSIM) is warranted. Pending successful testing in this

environment, implementation of these methods is recommended.




A HEURISTIC APPROACH TO DETERMINING
CARGO FLOW AND SCHEDULING
FOR AIR MOBILITY COMMAND'S CHANNEL CARGO SYSTEM

1. Introduction

1.1 General Issue

The United States Air Force's Air Mobility Command (AMC) is responsible for
providing global logistical support to all U.S. military forces. This mission is accomplished
through use of an extensive force that includes military aircraft, airbases, aircrews,
maintenance facilities, and support personnel. Given the importance and resource expenditure
of this mission, AMC maintains various organizations to ensure that routing and scheduling of
its airlift resources is performed as effectively as possible. This research investigated a method

for improving the routing and scheduling of these airlift resources.

1.2 Background

AMC'’s channel cargo system is a crucial logistical system for which routing and
scheduling is planned on a monthly basis. A channel consists of a pair of origin and
destination airbases, known as an O-D pair, between which AMC provides regularly scheduled
airlift. Channels are established in response to various demands, such as the pickup and
delivery of cargo or passengers.

Flexibility within the system allows for either direct connections between O-D pairs,
where a cargo aircraft would fly directly from the origin airbase to the destination airbase, or
may entail several intermediate stops before arriving at the destination. In addition, certain O-
D pairs may not be serviced by a single route which connects the two bases. In this

circumstance, transshipping is required, which occurs when cargo is downloaded from one




aircraft and uploaded onto another aircraft. Although this requires additional time and
resources, it is an essential element of the channel cargo system and aids in increasing the
utilization of aircraft and routes (Carter and Litko, undated:2).

The channels are classified as either frequency channels or requirements channels.
Frequency channels, such as those missions typically flown to embassies, are scheduled at
specified intervals and are not driven by cargo requirements. Requirements channels are routes
flown between O-D pairs, with the number of missions flown based on the amount of cargo to
be transported.

Given the importance of the channel cargo system's mission, a backup has been
established in the event that AMC's assets cannot deliver all cargo as needed. This backup is
the Civil Reserve Air Fleet (CRAF), consisting of civilian commercial transportation that is
contracted as necessary by AMC's Tanker Airlift Control Center (TACC). The CRAF is an
essential, significant source of augmentation for the channel system on an ongoing basis. In
the past, expenditures on CRAF augmentation have exceeded expenditures on channel airlift
Shepherd, 1990:14). In dollar figures, the cost of augmenting AMC aircraft with commercial
transport typically runs over $100 million annually (Ackley et al., 1991).

The advance planning for this channel cargo system is currently performed in a two-
phase process which determines the number and types of missions flown, as well as a tentative
schedule (see Figure 1). The primary goal of this advance planning is efficient use of channel
system resources, including measures of timeliness and aircraft utilization (Robinson, 20
September 1993). In the past, AMC has accomplished this process on a monthly basis and as
needed in response to special studies.

The first phase of the process uses a linear programming (LP) model, STORM
(Strategic Transport Optimal Routing Model), to determine the number of missions needed.
The goal of this LP is to select a mix of routes and aircraft to meet specified monthly cargo

and frequency requirements while minimizing overall system cost. Overall system cost
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Figure 1. Current AMC Schedule Generation Process

includes military aircraft operations, cargo handling costs (e.g. transshipping), and commercial
aircraft leasing (Ackley et al., undated:2). Limitations of the model include a restriction of at
most one transshipment, lack of a time element in terms of delivery timeliness, and initial non-
integer solutions (Whisman, undated:6-7).

The second phase employs a SIMSCRIPT I1.5 discrete event simulation model,
CARGOSIM, to validate the output from the STORM model. The objectives of the validation
are to ensure the realism of the STORM output with respect to aircraft utilization and delivery
timeliness (Del Rosario, 1993:4). The CARGOSIM model, in addition to requiring the
STORM output of number of missions and aircraft, also requires a monthly flight schedule.
This schedule is generated by a simple FORTRAN program called CARGPREP. CARGPREP

evenly spaces identical missions generated by STORM throughout a given month (Robinson,




20 September 1993). For example, if a mission is to be flown four times during a month,
CARGPREP would schedule successive missions exactly one week apart.

With the necessary inputs of the schedule, routes, cargo generation information, and
aircraft properties, CARGOSIM simulates aircraft and cargo flow through the channel system
and outputs measures of merit such as utilization, movement times, and port backlog
(Robinson, 20 September 1993). The model factors in the element of timeliness of cargo
delivery, which was lacking in the STORM model, in terms of average delay per cargo ton
shipped between each O-D pair (Moul, 1992:1-5).

At this stage of the process, the Uniform Materiel Movement and Issue Priority System
(UMMIPS) time standards are referenced. UMMIPS standards are described in the DoD
Materiel Management Regulation (DoD 4140.1-R):

Materiel shall be furnished to users on time, subject to constraints of resources
and capability. The UMMIPS time standards shall be considered overall
logistics system limits for the satisfaction of material requirements.
Operational systems shall be designed to meet and, where economically
feasible, to surpass the prescribed time standards (DoD 4140.1-R:5-19).

The UMMIPS time standards are in calendar days and vary according to origin and destination
of the materiel. Within the channel cargo system, this allowable time delay typically varies
between four and eight calendar days (Robinson, 20 September 1993).

The AMC analyst compares the simulation results to UMMIPS standards in order to
modify the initial schedule from CARGPREP by changing the flight schedule (i.e. mission
takeoff times) or to change the STORM output by varying the number of missions (Del
Rosario, 1993:5). The modified schedule/mission set is reprocessed through CARGOSIM and
compared to UMMIPS time standards again.

The analyst continues this manual iterative process of adjusting the schedule and
checking its validity until UMMIPS standards are met (Rau, 1993:6). The process is involved

and can take up to four days to complete. This two-phase process has also been used for other




applications, such as special studies of proposed modifications to the channel system (Del
Rosario, 1993:6).

1.3 Previous AFIT Research

The Air Force Institute of Technology (AFIT) has conducted several research projects
investigating ways to improve the AMC scheduling process: Moul (1992), Del Rosario
(1993), and Rau (1993). The work of Del Rosario and Rau is most applicable to this research
(all three efforts are discussed in more detail in Chapter II).

The research by Del Rosario was a mathematical programming approach to
flowing cargo with a multi-period, multi-commodity network which modeled the channel cargo
system (Del Rosario, 1993). The model was successful in flowing cargo within one of the
geographic areas of the channel system for a week; however, the method had several
limitations such as an "out-and-back" phenomenon and inability to model the large size of the
channel system (Del Rosario, 1993: 75-78).

Rau's work was a mathematical programming approach to scheduling aircraft with a
general job-shop model (Rau, 1993). The methodology was partially successful for a reduced
size problem; however, it proved to be an inefficient use of linear programming techniques and
failed to consider reflow of the cargo (Borsi, 23 July 1993).

The cargo flow model by Del Rosario was intended to be merged with the scheduling
model by Rau. The limitations of the models prevented a successful merger.

I.4 Research Objective

The objective of this research was to develop an iterative process for scheduling airlift
and flowing cargo that reduces cumulative weighted time-in-system (CW7IS) while maintaining
or increasing cargo flow quantity. The objective was essentially the same as the thesis

objectives of Del Rosario and Rau, who attempted to develop a two-step iterative process




originally proposed by Major John Borsi of the Air Force Institute of Technology (Borsi, 6
August 1992).

In this research, this process consisted of a cargo flow heuristic and a schedule
improvement heuristic. The iterative nature of the process and the individual heuristics are
discussed in later chapters. Figure 2 outlines the proposed modifications to AMC's scheduling
process.

The objective of improving the schedule for the channel cargo system via reducing
CWTIS will result in more efficient utilization of AMC airlift/personnel resources. This
equates to saving the command money by allowing more cargo to be shipped on time by AMC
assets and by transporting less commercially.

Additionally, a streamlined routing and scheduling methodology, compatible with the
current scheduling process, could liberate AMC analysts from the current time-consuming
three to four day process to evaluate the mission output by STORM and CARGPREP.
Efficiency in advance planning and special studies will also be a benefit.

1.5 Problem Statement

Additional research is required to streamline the advance planning process for AMC's
channel cargo system. Given cargo/frequency of visit requirements, a fleet of aircraft, and
possible routes, the goal is to develop, implement, and test an iterative, heuristic approach to
effectively and efficiently schedule and load aircraft in order to increase the channel cargo
system's efficiency by maximizing and maintaining cargo flow while reducing cumulative
weighted time-in-system (CWTIS).
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Figure 2. Proposed AMC Schedule Generation Process

1.6 Assumptions
Given this approach to modeling the channel cargo system, the following simplifying

assumptions were used:
(1) All cargo requirements between origin-destination pairs are known with certainty.
(2) Cargo is classified by weight only and can be divided into an infinite number of

subsets. Any mixture of cargo is allowed on a single aircraft. Other characteristics, such as




size and priority, are assumed to be the same for all cargo. Passenger requirements are not
considered and do not affect aircraft cargo capacity.

(3) The number/type of aircraft available are known and remain constant.

(4) Each aircraft type has a specific cargo weight limitation. This weight limitation is
not contingent on aircraft volume limitations. In accordance with previous AMC studies, the
aircraft-specific weight limits were reduced appropriately to prevent violations of aircraft
volume limits, as well as to realistically model loading efficiencies (Robinson, 20 September
1993). This weight limit reduction equated to using 1.5 tons per pallet instead of 2.3 tons per
pallet in calculations.

(5) Airbases were assumed to be capable of handling an unlimited amount of aircraft
and cargo and were assumed to be available 24 hours a day.

(6) Maximizing the cargo load of each aircraft was not considered. An aircraft did not
need to be fully loaded before it could take off.

(7) Based on the results of Moul and Rau, CWTIS was considered an appropriate
measure with respect to minimizing cumulative delay enroute (Moul, 1992; Rau, 1993).
CWTIS is the cumulative sum of each cargo’s weight multiplied by its time-in-system (TIS).
TIS consists of all flight times plus any delay encountered enroute, including the delay

encountered when cargo is at its origin airbase awaiting initial transportation.




II. Literature Review

11.1 Scope and Organization of the Review

Given the background concerning the channel cargo system and AMC's schedule
generation process, this review briefly discusses some previous thesis efforts, including some
of their shortcomings and limitations. These limitations provide a baseline for the alternative
method discussed in Chapter IIl. Heuristics are then defined in relation to cargo flow and
schedule improvement. Additionally, this review provides examples of heuristic applications
in related routing and scheduling problems. A rudimentary knowledge of networks, maximum

flow/minimum cost problems, and shortest path algorithms is assumed.

I1.2 Previous Efforts

Graduate students at the Air Force Institute of Technology (AFIT) have conducted
numerous research projects investigating ways to improve the AMC channel scheduling
process: Moul (1992), Del Rosario (1993) and Rau (1993).

Moul produced a computer simulation for measuring cargo delay (Moul, 1992). The
model he developed did not investigate rescheduling airlift or reflowing cargo.

The research by Del Rosario and Rau was directed toward applying mathematical
programming techniques to the iterative procedure described in Chapter I (see Figure 2).

The research by Del Rosario was a mathematical programming approach to flowing
cargo where a multi-period, multi-commodity network was used to model the channel cargo
system (Del Rosario, 1993). The model was successful in flowing cargo within one of the
geographic areas of the channel system for a week; however, the method had several
limitations such as an "out-and-back” phenomenon and an inability to model the large size of
the channel system (Del Rosario, 1993:75-78). This research uses the same data set as Del

Rosario so that comparisons may be made between the efforts.




Rau used a mathematical programming approach to scheduling aircraft using a general
job-shop model (Rau, 1993). The methodology was partially successful for a reduced size
problem; however, it proved to be an inefficient use of linear programming techniques and
failed to consider reflow of the cargo (Borsi, 23 July 1993).

The limitations of these models are evaluated in the following discussion.

I1.3 Limitations of Prior Approaches

Applying mathematical programming to AMC's channel cargo system, Del Rosario and
Rau discovered that the number of decision variables and constraints became so large that the
computational capability of even the most state-of-the-art computer systems would be taxed.
The attempt by Del Rosario to solve the problem as a multi-period, multi-commodity minimal
cost flow formulation (M2MCF) was unsuccessful primarily because of these computational
limitations. According to Del Rosario, if AMC's entire channel cargo system were modeled
as an M2MCF, the estimated maximum number of variables in a one-month planning horizon
is nearly 3 million an: the estimated number of constraints is over 2 million (Del Rosario,
1993:38-39). This exceeds AMC's current computing capabilities, which can only solve linear
programming problems with at most 160,000 variables and 20,000 constraints (Del Rosario,
1993:39). Del Rosario found that "because of the problem size and other modeling limitations
discovered during [his] research, the presented M2MCF model of the channel cargo system is
currently not accurate enough to be useful as a scheduling tool” (Del Rosario, 1993:ix). Rau
encountered similar problems in his attempt to reduce en route delays (Rau, 1993:41). Both
efforts had to drastically partition the problem in order to reduce it to a workable size, and
subsequently had to sacrifice optimality in the process.

In light of these previous efforts, given current model and computational limitations,
optimal solutions for the channel cargo system may be nearly impossible to achieve using

mathematical programming. From a practical research standpoint, a good feasible solution

10




may be satisfactory and far more tractable. As such, a heuristic approach to solving the
problem has been adopted.

11.4 Heuristic Approaches

Heuristics are procedures that cannot guarantee an optimal solution. In fact, in some
cases they cannot find even a feasible solution, although as Chapters IV and V show, for this
research the problem has been defined so that a feasible solution can always be found. As
defined by Borsi, "they are often based on insight into the fundamental nature of the problem
and are used when an optimal procedure is unavailable or computationally intractable” (Borsi,
4 February 1994). As stated by Zanakis and Evans, they are "meant to provide good but not
necessarily optimal solutions to difficult problems, easily and quickly” (Zanakis and Evans,
1981:84).

The following sections address some heuristics that apply to both cargo flow and

scheduling.

11.4.1 Cargo Flow

The multi-commodity minimal cost flow problem (MMCF) was adopted in this
research because it is a general way to model the flow of cargo between different O-D pairs.
Chapter III describes the elements of this network problem in detail. Borsi recommended
departing from the mathematical programming approach in the form of a successive, shortest
path (S-P) heuristic, which is discussed in Chapter IV (Borsi, 15 July 1993).

In their discussion of optimization on networks, Syslo, Deo, and Kowalik describe the
shortest path problem (finding the shortest path between two nodes in a network) as the most
fundamental and also one of the most commonly encountered problems in the study of
transportation and communication networks (Syslo et al., 1983:227). The Busacker-Gowen
Min-Cost Flow Algorithm (B-G) is one method of solving a min-cost flow problem through

repeated application of a shortest path heuristic.
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Syslo, Deo, and Kowalik summarize an iteration of the B-G algorithm in two basic
steps: (1) finding a shortest path in the network, and (2) modifying the network to account for
the flow along this shortest path (Syslo et al., 1983:302). When a shortest path is found
between the source and sink node, flow is sent along that path until the path reaches saturation
or the total flow reaches the target value for the source. If no shortest path can be found, the
B-G algorithm terminates for the current source/sink combination.

If the current path is saturated, the nerwork must be modified to account for this flow.
This modified network has the same structure as the original, except that certain costs and
capacities will change. The capacities along the arcs of the shortest path will be decremented
according to the flow established. If any of thesc arcs is saturated, the capacity along this arc
is set to zero and the respective cost is set to infinity. Additionally, all arcs with nonzero tlow
have "fictitious" arcs introduced in the reverse direction. These reverse arcs have capacity
equal to the current flow through the forward arc and cost equal to the negative of the cost of
the forward arc. These reverse arcs allow flow reduction in subsequent iterations of the B-G
algorithm.

For any flow level achieved, the B-G algorithm produces the minimum cost solution.
By specifying an infinite target flow, the B-G algorithm will solve a max-flow problem as well;
however, it is considered an inefficient method of solving this problem (Syslo et al.,
1983:306). The multi-commodity nature of the channel cargo system could be added to the B-
G algorithm through additional iterations with updated source and sink nodes. Some of these
considerations will be discussed in Chapter IV. There are a variety of S-P algorithms,
including algorithms by Bellman, Dijkstra, Dantzig, Whiting and Hillier, and Floyd (Bazaraa
et al., 1990:625). Chapter IV discusses the selection of the specific S-P algorithm in more
detail.

12




11.4.2 Schedule Improvement Approaches

There are over 100 heuristics reported in the literature for scheduling. According to
Zanakis and others, of those, there are 19 that deal specifically with improvement (Zanakis et
al., 1989:93). Improvement heuristics typically begin with a feasible solution and successively
improve it by a sequence of local exchanges. The goal is to maintain a feasible solution
throughout the procedure (Zanakis et al., 1989:89).

The heuristic developed in this research is similar to the k-opt improvement heuristic
used to solve traveling salesman problems. K-opt is an improvement heuristic which
"...affects interchanges between the components of [the] schedule to improve costs” (Bodin,
1983:134). The heuristic developed in this research seeks to improve costs by interchanging
existing arcs in the flow paths with other, potentially new ones. Chapter V discusses the

precice methodology empioyed.
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111. Overall Methodology

III.1 General

As discussed in Chapter I, the goal of this research was to develop an iterative procedure
for scheduling airlift and flowing AMC's channel cargo. The approach consists of two major
components, a flow algorithm and a schedule improvement algorithm, which are discussed in
Chapters IV and V, respectively. This chapter discusses precisely how the components interact
with each other to achieve an improved cargo flow pattern, which is defined as a set of feasible arc
flows in a directed network. The chapter also discusses this research’s iterative improvement

approach, the network formulation, and methods employed to reduce problem size and complexity.

I11.2 Integration

The goal of the iterative method developed in this thesis is to maximize the tonnage of
cargo delivered while minimizing the time commodities spend in the channel system. The method,
suggested in 1992 by Borsi and explored by Del Rosario and Rau (Del Rosario's research
addressed Step One while Rau's addressed Step Two), was described by Rau as

a two-step, iterative process. In Step One, given any schedule, a flow of cargo is
determined based on this schedule. The cargo is categorized by its quantity
(weight) and its type (origin and destination). Step One determines the quantity
and type of cargo that is loaded onto or taken off each aircraft as the cargo is
transported from one airbase to another on its assigned path. Step Two modifies
the flight departure times and revises the overall schedule based on this cargo flow.
Returning to Step One with the revised schedule, the cargo flow is modified based
on the new flight times (Rau, 1993:7-8).

Figure 3 demonstrates how the iterative improvement algorithm integrates the two steps. It
is discussed in more detail later. The flow of cargo is dependent upon the existing network, which
itself is created by a schedule. Any change to the schedule will necessarily alter the structure of
the network and offer the potential that an improved flow pattern can be found on the altered

network.
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Figure 3. Iterative Nature of the Process

Step One, flowing the cargo, is addressed in Chapter IV, and Step Two, improving the
schedule, is discussed in detail in Chapter V. While Steps One and Two rely on each other, the
determination of whether the process has actually ied to improvement combines output from both.
Recall that the process is designed to iteratively approach, or converge on, a good feasible
solution. The algorithm terminates when the process ceases to improve the flow pattern of the
cargo.

Each commodity that is flowed has its own individual cost, called weighted time-in-system
(WTIS), measured in day-tons. WTIS is the product of a commodity's tonnage and its time-in-
system. The cumulative WTIS (CWTIS) of the entire flow pattern is the sum of each commodity's
WTIS and is the measure used to assess flow improvement. Note that this measure places greater
significance on larger shipments since, if a large shipmeat is delayed, its impact will be felt more
sharply than if a smaller shipment is delayed by the same amount.

A complete iteration through the iterative improvement algorithm consists of a pass

through both Step One and Step Two. Step One produces a flow pattern with associated CWTIS;
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Step Two then attempts to alter the schedule in order to produce a flow pattern with a CWTIS
equal to or less than that produced by Step One. The CWTIS produced by Step Two is compared
to the CWTIS produced by Step One on the next iteration to determine if the algorithm should
proceed or terminate. As Figure 3 demonstrates, after Step One of the first iteration there is no
previous value of CWTIS to compare with to assess improvement. The algorithm proceeds
directly to Step Two. On subsequent iterations, however, the algorithm assesses improvement
before proceeding to Step Two.

As Figure 3 shows, when the algorithm determines that the flow pattern has not improved,
the solution is passed to CARGOSIM for validation.

111.2.1 Flow Pattern Improvement

The assessment of iterative improvement is described below. The following cases discuss
flow pattern improvement:

Case 1: If the amount of cargo flowed in Step One is the same as that flowed in the
previous iteration, the flow pattern improves if CWTIS decreases.

Case 2: A flow pattern is also improved if, after a pass through Step One, more cargo was
flowed than on the previous iteration. In essence, the changes to the schedule made in Step Two
changed the network sufficiently to allow more cargo flow. Note that any pattern that flows more

cargo is considered superior, regardless of CWTIS.

I11.2.2 Lack of Flow Pattern Improvement

The following cases demonstrate instances where the iterative improvement algorithm
would terminate due to a lack of improvement.

Case 1: If the amount of cargo flowed remained constant relative to the previous iteration,
but CWTIS did not decrease, the flow pattern has not improved. Since the algorithm continues to
iterate only when improvement occurs, it terminates after Step One. If CWTIS remained constant,

the flow pattern from Step One and the pattern from the previous pass through Step Two both

16




represent acceptable feasible solutions. To determine which is preferred, the analyst can examine
the time-in-system distribution and/or the transshipment distribution of the flow patterns, both of
which are provided as output.

Case 2: Ideally, after a schedule has been improved by Step Two, the next pass through
Step One should be able to flow at least as much cargo as on the previous iteration. It can do so
by using the flow pattern generated by Step Two. However, because the cargo flow algorithm is a
heuristic, a subsequent application of Step One may generate a flow pattern that delivers less
cargo. Thus, the flow pattern has not improved. The algorithm terminates and stores the most
recent pattern found by Step Two as the solution. The flow pattern found by the final pass through
Step Two will represent the best solution in this case because it flows a greater amount of cargo
than the final pass through Step One.

At the end of the iterative process described here, the AMC analyst possesses a flow
pattern and an actual flight schedule covering the planning horizon. The flow pattern lists each
piece of flowed cargo and the path it used, showing mission numbers, node numbers, bases, and
associated times. The flight schedule is in the form of a list of the nodes in the network and the
times associated with them. This list can easily be adapted for validation in CARGOSIM.

II1.3 The Network

A specialized network was used to model the AMC channel cargo system. The network is
defined by the cargo requirement and the current schedule. The initial schedule was produced
using output, shown in Appendices D-G, from AMC's STORM and CARGPREP models.
Subsequent schedules were produced by the schedule improvement algorithm.

The nodes of the network represent three different entities: 1) a cargo generation node
(source node), 2) a mission airbase node where an individual sortie makes a scheduled stop, and 3)
a commodity-dependent destination node (sink node). All source and mission airbase nodes have

times associated with them. For a source node, the time represents the availability time for a
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commodity. For example, a time of 3.5 for a source node means that a commodity is delivered to
its origin airbase at the 3.5 day point within the planning horizon. For a mission airbase node, the
associated time represents the time that the given aircraft is at the specified airbase. Furthermore,
every node's associated base is identified by its ICAO (International Civilian Aviation
Organization), a distinct four-character designator. The source node has two associated ICAOs,
one for cargo origin and one for cargo destination. Each distinct cargo destination has a sink node
with matching ICAO.

As modeled, the channel system network is a directed graph with the arcs only directed
forward in time. That is, an arc originating at a node can only terminate at a node with an equal
or later associated time. This models the time dependency of the problem. The cost of each arc
represents the time spent performing its associated activity. The arcs can represent five different
activities: 1) a delay encountered when cargo is at its origin airbase awaiting initial transportation,
2) the time it takes a given aircraft to fly a leg of its route between two airbases (nodes), 3) ground
time for an aircraft along its route (which implies either an aircraft-specific standard ground time
or a remain-over-night (RON) time), 4) transshipment, which represents time spent at an airbase
while offloading cargo from one aircraft and reloading it onto another, and 5) arrival at the final
destination (these arcs are zero-cost sink connection arcs which connect a mission airbase to an
applicable sink node «:f the same ICAO).

Figures 4 thrc:ign 8 illustrate an example network for the channel cargo system. In the
figures, each horizontal sequence of nodes represents a single aircraft flying a single mission.
Figure 4 illustrates the three node types used in the network, as well as the mission leg arcs and
mission ground time arcs. Figure 5 includes the time and ICAO information associated with the
node set (for clarity, the ICAOs have been shortened to a one-letter designation). Figure 6 depicts

the arcs that connect source node number one to the mission airbases of proper ICAO and time.
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Figure 5. Times and ICAOs Associated with the Network
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Figure 8. Zero-cost Arcs Connecting Airbase 'C' with its Sink Node

Figure 7 depicts the arcs connecting airbases of the same ICAO (only "B" in the figure) to allow
for cargo transshipments. Figure 8 illustrates the zero-cost arcs connecting mission airbases to a
sink of the same ICAO. A sink node of a given ICAO is generated only if a cargo node exists with

that destination ICAO.

II1.4 Reducing the Problem Size

Previous efforts were unsuccessful in modeling the entire channel cargo system due to its
large size and complexity. Del Rosario lists some typical data for the channel system for an
average month based on his discussions with AMC personnel (Del Rosario, 1993:38):

Number of commodities: 437

Number of sorties: 528

Average number of legs per mission: 3

Assuming that each commodity has seven nodes to represent a week's worth of cargo

arriving on consecutive days, 3059 source nodes would be required in a network representing a
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week's activities. A sortie with three legs would have six mission airbase nodes, so the total
number of mission airbase nodes is 3168. Assuming some duplication in commodity destination,
the total number of sink nodes is assumed to be 200. Therefore, the total number of nodes
required to model a week's activities is approximately

Source nodes: 3059

Mission airbase nodes: 3168

Sink nodes: 200

This is a sizable network, so storage limitations must be considered. Storage of the arc set
as an NxN weight matrix would require 64272=41,306,329 bytes. Additionally, the algorithms
used in this thesis effort require storage of costs, capacities, and flows for each arc, as well as
temporary values for these arc parameters. This would require six of these NxN matrices, or
approximately 250 million bytes. This is an inordinate amount of storage capability (in Random
Access Memory) and would tax AMC's computational capabilities.

In response to this huge memory requirement, a modified linked adjacency list was
developed. A linked adjacency list groups arcs according to their node of origin, which is known
as a forward star (Syslo et al., 1983:225). Instead of storing a large number of irrelevant (i.e.
zero or infinity) values in an NxN matrix, the adjacency list only contains data for arcs that exist in
the network formulation. The benefits of this data representation are more evident in a sparse
network and diminish as the number of arcs increases.

In addition to this data representation, the total size of the arc list was reduced. If an arc is
established between any two mission airbases of the same ICAO, directed according to time
precedence, there is a potential for (m)(m-1)/2 arcs for each ICAO airbase within the mission
airbase subgraph (where m is the number of same-ICAO airbases for any ICAO present). This can

result in a very large arc set. For the Europe/Southwest Asia (E/SWA) sub-problem addressed in
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this thesis, our original implementation produced approximately 180,000 arcs for a 2,293 node
network.

This proliferation of arcs was prevented by establishing a spanning path for mission
airbase nodes linked in a time sequence. Figure 7 displays such a path for the “B" airbase nodes.
If two nodes with the same ICAO have the same time, arcs are added to the path which allow
cycles between the nodes representing the airbases. By implementing the spanning path, the arc set
is reduced to length (m-1), assuming no cycles within the path. This significantly reduced the
number of arcs in the E/SWA problem to approximately 20,000.

II1.5 User-preferences

Within the program are several problem-dependent parameters which the user may change
to enhance program performance and realism. Specifically, these parameters are 1) the number of
transshipments allowed on a particular path, 2) the policy used when transshipping, e.g. restricting
transshipments to certain airbases, 3) the criteria used to sort the cargo, 4) the order in which the
missions are examined by the schedule improvement algorithm, 5) the maximum number of passes
per iteration through the schedule improvement algorithm, 6) the maximum number of alternate
paths examined by the shortest path algorithm, and 7) the maximum number of iterations of the
program. Parameters 1 through 6 are discussed in Chapters IV and V, as appropriate. Parameter
7 is used as a ceiling on running time. The possible values for these parameters are shown in
Appendix J.

The algorithm developed in this thesis is meant to be a tool for better planning and is
designed to be as dynamic and flexible as possible. It provides the analyst the opportunity to tailor

the process to the constraints of the problem.
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IV. Flow Methodology

IV.1 General

This chapter discusses Step One of the iterative improvement algorithm outlined in
Chapter ITI. Given a mission schedule and cargo requirements, the network is developed.
Then the problem is to minimize the CWTIS incurred while flowing cargo from source nodes
to sink nodes. This is a multi-commodity minimal cost flow (MMCF) problem, where each
commodity represents a source-sink combination.

There are a variety of approaches to solving the MMCF, several of which were
outlined in Chapter II. These methods vary considerably in terms of tractability and speed.
The concepts of the Busacker-Gowen Min-Cost Flow Algorithm (B-G) were modified into a
cargo flow heuristic for this research. The modifications were motivated by the objectives of

this research.

IV.2 Motivation for the Flow Heuristic Approach

The cargo flow heuristic had to exhibit two characteristics in this research: 1) it had to
be computationally efficient, and 2) it had to allow effective control of the flow paths.
Modifications to the B-G algorithm were undertaken with these two characteristics in mind.

As noted in Chapter II, the B-G algorithm introduces "fictitious” reverse arcs into the
network in response to flow. These reverse arcs allow flow redirection in subsequent
iterations, allowing the algorithm to develop a min-cost solution. Within our channel system
network, these reverse arcs were detrimental to an efficient implementation of the flow
heuristic.

Chapter III outlined the linked adjacency list used to store all network arc data. If
reverse arcs were introduced for each flow path, the list would need to be constantly updated

in order to insert these arcs. In addition to reducing the computational speed of the flow
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heuristic, these arc additions would increase memory requirements and reduce the maximum
size problem the iterative improvement algorithm could process.

Path control would also be degraded with the addition of the reverse arcs. The quality
of a flow path involved several factors besides time-in-system, including number of
transshipments and flow capacity. Reverse arcs could reverse this flow on subsequent
iterations, favoring paths that are not desirable when considering all factors.

Unfortunately, the mechanism that allows the B-G algorithm to derive the min-cost
solution, addition of reverse arcs, is detrimental to both cargo flow characteristics and was not

implemented. With this modification justified, the cargo flow heuristic can be outlined.

IV.3 Description of the Cargo Flow Heuristic

The cargo flow heuristic followed the same two basic steps of the B-G algorithm: (1)
Jfinding a shortest path in the network, and (2) modifying the network to account for the flow
along this shortest path. Figure 9 outlines the steps of the cargo flow heuristic. The heuristic
begins by selecting the current commodity, its quantity, and the respective source and sink
nodes. Once this is performed, Step One is implemented.

Step One consists of a call to the shortest path algorithm. If a shortest path is found
between the source node and sink node, the algorithm proceeds to Step Two. If no path can be
found, the heuristic repeats Step One for the next commodity. If no more commodities remain,
the cargo flow heuristic terminates.

Step Two modifies the network to account for flow along the shortest path. This
modified network has the same structure as the original, except that certain costs and capacities
will change. The flow quantity for the path is the minimum of the capacities of the constituent

arcs and the commodity quantity remaining. The capacities along all the ~ arcs are
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Figure 9. Steps of the Cargo Flow Heuristic

decremented according to the flow established. If any of these arcs is saturated, the capacity
along this arc is set to zero and the respective cost is set to infinity.

The cargo flow heuristic deviates from the B-G algorithm at this point. The B-G
algorithm would also introduce the "fictitious” reverse arcs when modifying the network. As
discussed, these arcs hinder the performance of the flow heuristic and are not introduced.

Once the network has been modified, the heuristic compares the total flow for the
current commodity (the sum of all individual path flows) to the commodity quantity. If the
flow equals the commodity quantity, the algorithm selects the next commodity. If the flow is

less than the commodity quantity, Step One is repeated.
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The processing sequence of the commodities is non-trivial and can affect the overall
system CWTIS. Obviously, as the network arcs become infeasible due to flow of subsequent
commodities, options for a shortest path may be degraded. Some considerations in commodity
sequencing and path selection are addressed in Chapter VI.

IV.4 Shortest Path Algorithm

The selection of a specific shortest path (S-P) algorithm is important in terms of
computational efficiency. As the S-P algorithm is the building block for the cargo flow
heuristic and is called many times, an efficient algorithm was desired. Dijkstra's S-P

algorithm was selected due to its efficiency and ease of coding.

IV.5 Alternate Path Selection

Often, the initial path found by Dijkstra’s algorithm is not the most preferable in terms
of transshipments and flow capacity (early analysis results on the E/SWA problem indicated
this). Given a shortest path connecting a source node to its respective sink node, there is a
definite possibility that an alternate shortest path could exist within the network.

The transshipment issue complicates the shortest path computations considerably.
Transshipping cargo entails downloading it from an aircraft and uploading it to another
aircraft. Obviously, this takes time and resources and should be avoided unless absolutely
necessary. AMC lists the current cost of transshipping as approximately $176 per ton
(Robinson, 20 September 1993). Additionally, discussions with AMC analysts indicate that
both the STORM and CARGOSIM tools assume a maximum of one transshipment per
commodity (Robinson, 20 September 1993). This one transshipment constraint, as well as
possible restrictions on airbases that allow transshipments, predicates emphasis on proper path
selection.

The nature of Dijkstra's S-P algorithm allows construction of alternate paths once the

initial path is found. Within the algorithm, nodes are given permanent labels when the
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shortest distance from the input source node to the specified node is found. This labeling
process is accomplished in a non-decreasing fashion, as the nodes that have the shortest path
lengths relative to the source node will be found and labeled before other nodes in the network.

This fact was exploited in attempting to construct the alternate paths. Only the nodes
that had been permanently labeled were candidates for an alternate path of the same length
(time-in-system). All other unlabeled nodes were not close enough to the source to constitute a
path of the same length.

Once the initial shortest path was found, the predecessor array was instrumental in
determining alternate routing through the network. The predecessor array is an array which
allows one to trace a path from the sink node back to the source node. This node set was
scanned, starting at the node prior to the sink. At each node of the scan, the arc list was
reviewed to see if any arc, originating at a different permanently labeled node, ended at the
current node. If such an arc existed, an alternate path was found.

Having found an alternate path, its number of transshipments, flow capacity, and actual
time-in-air were determined. These characteristics were compared to the initial path
characteristics and the superior path was stored. With the other characteristics equal, a path is
superior if it has fewer transshipments. If two paths have the same number of transshipments,
the path with higher flow capacity is selected. This process continues for each alternate path
found.

Figures 10 and 11 demonstrate the nature of the alternate path logic. Figure 10
displays an initial path found by the S-P algorithm. This path is not desirable, as it has one
transshipment and also places the cargo on two out-and-backs (returning to the same airbase
before final delivery) prior to final delivery at base E. Figure 11 displays the path that would
be found and selected using the alternate path routine incorporated into Dijkstra's S-P
algorithm. This path has no transshipments and no out-and-backs. As the routine traced back
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from the node prior to the sink (E at t=3.3) in the initial path, it would proceed to the C node
at t=3.1. The review of the arc list at this point would indicate that the source node, which
has been permanently labeled, has an arc going into that C node. This alternate path is found
and analyzed as superior to the initial path found. It is stored and the search continues.

IV.6 Path Compression

The nature of the network, as well as the implementation of the alternate path
algorithm, produced some paths with a large number of nodes. As discussed in Chapter III, a
spanning path was designed to allow transshipments while minimizing the number of arcs
required in the network. Unfortunately, these spanning paths could result in some flow paths
of inordinate lengths, with meaningless intermediate nodes.

A compression algorithm was developed to shorten all flow paths to only the essential
nodes (reference the main program listing in Appendix B). This algorithm scanned the
predecessor array returned from the shortest path algorithm, looking for nodes with the same
ICAO separated by intermediate nodes. If this condition occurred, the intermediate nodes were
eliminated from the path. The arc list was then scanned to determine if an arc existed to flow
between these two nodes. If an arc was present, its flow quantity was modified. If an arc was

not present, it was created and added to the arc list with an appropriate flow value.

IV.7 Analysis of the Out-and-Back Phenomenon

An out-and-back (O&B) occurs when cargo travels on mission legs that form a cycle,
returning the cargo to the same airbase it has visited previously, prior to final delivery at the
destination airbase (see Figure 12). This is an undesirable condition because it reduces aircraft
flow capacity along those legs and would increase fuel costs. It is preferable, in most cases, to
download the cargo and upload it at a later time, circumventing the out-and-back (Robinson, 1
February 1994). Unfortunately, this will often increase the number of transshipments that the

cargo must undertake.
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As mentioned above, most of the time O&Bs should be avoided; however, there are
competing objectives: the cost of preventing the out-and-back by transshipping (downloading
and uploading later to the same mission) versus the cost of leaving the cargo on the aircraft and
incurring the reduced flow capacities/increased fuel costs along those mission legs. In certain
cases, where the O&B is short and the cargo is either difficult or impossible to download at the
airbase (i.e. position within the aircraft and airbase equipment restrictions), an O&B might be
preferable. This could be modeled in this methodology and given a user parameter to specify
which condition is preferable. In terms of the objective of this research, maximizing flow
while minimizing CWTIS, the option of transshipping the cargo to prevent the out-and-back is
always considered preferable because it increases future flow capacity along the intermediate
mission legs without increasing the CWTIS. The compression algorithm, originally designed
to eliminate the transshipment spanning path in the paths returned from Dijkstra, was easily

modified to eliminate the out-and-backs as well.
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Figure 12. Prevention of the Out-and-Back Phenomenon
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V. Schedule Improvement

V.1 General

This chapter addresses Step Two of the iterative improvement algorithm (IIA)
discussed in Chapter III. Step Two, hereafter referred to as schedule improvement, involves
shifting mission start times in the hope of reducing the CWTIS of the flow pattern developed
by Step One, as discussed in Chapter IV. The method developed here is similar to Rau’s
method only in its intent. Rau modeled AMC's channel cargo system as a job-shop scheduling
problem (where a machine corresponded to an aircraft flying a single flight leg and a job was a
requirement to transport cargo from one airbase to another) and employed the concept of semi-
active time tabling to develop a new schedule (Rau, 1993:21). While his method was certainly
an adequate approach to schedule improvement, it did have a limitation: its scope was too
narrow.

This limitation was a direct result of his use of semi-active time taﬁling, which
"produces a schedule in which no operation could be started earlier without altering the
processing sequence” (Rau, 1993:18). In other words, Rau only perturbed the schedule to the
point that all existing arcs in the network remained feasible and all cargo flowed along the
same path it used prior to schedule alteration. The approach developed here goes further by
reflowing cargo along a different path if doing so improves the flow pattern.

Given a feasible solution, the general approach for schedule improvement involves
manipulating the schedule to a degree that preserves the feasibility of the solution and reduces
its overall cost. For this research, a feasible solution is one in which the amount of cargo
flowed between each O-D pair is not reduced.

Recall that the schedule consists of a sequence of missions with scheduled start times.
The approach adopted in this research was to reschedule the missions by adjusting their start

times in an effort to deliver cargo to the customer in a more timely fashion. Obviously, it is
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possible to reschedule a mission to an earlier or a later time; the method developed here only
addresses shifting a mission to an earlier time. Shifting to a later time is left to future
research.

Determining the amount by which a mission is rescheduled is not a trivial matter. The
existence of transshipment arcs within the network complicates this issue. Shifting the mission
start times may have a considerable impact on the transshipment arcs, i.e. many feasible arcs
may become infeasible. An arc is feasible when its direction is forward in time and becomes
infeasible when its direction changes to backward in time. That is, for an infeasible arc the
time associated with its head node is earlier than the time associated with its tail node. As
mentioned in Chapter III, arcs represent various physical activities, so they cannot go
backward in time. The flow of cargo may be affected as the transshipment arcs are affected.

The heuristic contains a series of checks to maintain the feasibility of the solution at all
times. This involves determining when improvement occurs and when it does not.

Specifically, these checks must ensure that no previously-flowed cargo goes undelivered.

V.2 The Schedule Improvement Algorithm

At Step Two of each iteration of the IIA, the schedule improvement algorithm is
applied sequentially to every utilized requirements mission in the existing schedule and then
generates a new schedule. The new schedule in turn generates a new network which will be
used as an input to the flow algorithm on the next iteration of the IIA. A discussion of why
only requirements missions are considered appears in Section V.3. The general approach of
the schedule improvement algorithm is to shift each mission in the schedule by an amount
which leads to an improved flow pattern. The steps of the algorithm are shown in Figure 13

with a brief description of what eack step does. In Step 1 the algorithm determines the amount

of the time shift, which is implemented in Step 2. Step 3 determines whether the shift




For each mission:

Step 1: Determination of the Time Shift

For the given mission determine the amount
its start time may be shifted earlier
in the schedule.

Step 2: Implementation of the Time Shift

Adjust the network to reflect the time
shift determined in Step 1.

)

Step 3: Measuring the Impact of the Time
shift

Determine whether the time shift reduces
flow or increases CWTIS. 1If it does, go
to Step 4. Otherwise, go to Step 1 with

the next mission.

Step 4: Reversal of the Time Shift

Restore the network to its pre~shift state.
Determine a time shift which will not
degrade the flow pattern. Implement this
time shift.

Figure 13. Schedule Improvement Algorithm

improves or degrades the flow pattern, while Step 4 reverses the time shift if the flow pattern

was degraded. A detailed discussion of each step follows.
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Step 1: Determination of the Time Shift. If the start time of a mission is to be
changed, the magnitude of the change must be determined. Recall the two primary types of
arcs within the network: mission arcs, which connect nodes on the same mission to each
other, and transshipment arcs, which connect same-ICAO nodes on different missions. Arcs
originating at cargo generation nodes are affected by shifts in the mission start times in the
same way that transshipment arcs are affected. So, for the sake of simplicity, the definition of
transshipment arcs is extended to include both types of arcs. Since a mission arc never
becomes infeasible by implementing a time shift, attention is focused only on the transshipment
arcs. Attention is further limited to only those transshipment arcs that have positive flow.
These are derived from the set of paths found by the flow algorithm.

While a change is sought which will reduce the CWTIS of the flow pattern, the
network should not be over-perturbed. A greedy approach might shift the mission by the
maximum amount possible, i.e. shift its start time to time 0. While this may be successful in
some instances, in most realistic cases the system would be perturbed too drastically, either
causing so many transshipment arcs to become infeasible that some cargo must go undelivered
or forcing a flow pattern with higher CWTIS to be used. Instead, the method developed here
uses a more conservative approach, which is discussed in the following paragraphs.

If a transshipment arc terminates at a node along a mission, that arc is said to terminate
on that mission. Likewise, a transshipment arc which originates at a node on a mission is said
to originate on that mission. Each mission has a set of positive-flow transshipment arcs
terminating on it which are sensitive to any changes in the mission start times. As the mission
is shifted to an earlier time, the costs of these transshipment arcs become smaller until they
become infeasible. If a time shift were chosen so that no transshipment arcs become infeasible,
cargo would never have to be reflowed on different paths. Since this approach explores the

possibility of reflow, time shifts are allowed which cause arc infeasibilities. But in order to
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not perturb the network excessively, only one arc is allrved to becoms infeasible per time
shift.

For each mission the terminating transshipment arc which is the first arc to become
infeasible with a time shift is found. It is called the most critical arc. As multiple arcs may
have the same costs, there may exist more than one most critical arc. In order for this arc to
become infeasible, the time shift must be greater than its cost. Of the remaining transshipment
arcs the next to become infeasible is determined. It is called the next most critical arc. The
time shift cannot exceed the cost of this arc. If it does, more than one transshipment arc will
become infeasible. If only one transshipment arc connects to the mission, the algorithm
artificially defines a next most critical arc with a cost equal to the cost of the most critical arc
plus a set increment.

Since the mission cannot be shifted by an amount which causes the mission start time
to become a negative number, the mission start time forms an upper bound for the time shift.
The time shift is defined as the minimum of {the mission start time, the cost of the next most
critical arc}. Figure 14 demonstrates this process. In the figure, the vertical arcs represent
three transshipment arcs terminating at a node of the mission, with costs 0.1, 0.2, and 0.3
days. The transshipment arc with cost 0.1 terminating on node B will be the first to become
infeasible if the mission start time at node A is shifted sufficiently. It is the most critical arc.
The transshipment arc terminating at node C with a cost of 0.2 will be the next to become
infeasible. It is the next most critical arc. Since the mission start time at node A is day 1.5,
the time shift equals the minimum of {1.5, 0.2}, or 0.2 days.

If the time shift is less than the cost of the most critical arc, then shifting the mission
start time will not cause any transshipment arcs to become infeasible. Otherwise, the time shift

represents the maximum amount of time the mission start time can be shifted while only causing
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Figure 14. Determination of the Time Shift

one set of arcs, the most critical arcs, to become infeasible. After the time shift is determined,
the algorithm proceeds to Step 2.

Step 2: Implementation of the Time Shift. Any change to a mission start time
changes the network. The time associated with every node on that mission changes, as do the
costs of every transshipment arc originating or terminating on it. As the schedule changes, the
network must be updated to reflect the change. Before implementing the time shift, it is not
known that it improves the flow pattern. It may become impossible to reflow some of the
cargo, or the CWTIS may increase. Because of this, the shift of the mission start time will not
become permanent until conditions, discussed below in Step 3, are satisfied. Instead,
temporary storage arrays are maintained to store the current state of the network in case the
pre-shift state must be restored later. This includes the paths used in the flow pattern, the flow
and capacity of each arc in the network, and the times associated with each node.

The implementation of the mission's time shift is performed by subtracting the amount
of the time shift from the times associated with each node along the mission. If the time shift

is greater than zero, the state of the network has changed, requiring that the costs of the
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before the time shift

after the time shift

Figure 15. The Network Before and After a Time Shift of 0.2 Days

transshipment arcs be updated to reflect the time shift. However, not all of the transshipment
arc costs have changed. Only those transshipment arcs which terminate on the mission or
originate on the mission need to be updated. Figure 15 shows the state of a hypothetical
network before and after a time shift of 0.2 days. The most critical arc, shown as a dotted
line, has become infeasible and the costs associated with all other transshipment arcs have
changed.

If the time shift did not cause any arc infeasibilities, the algorithm makes the changes
to the network permanent and starts over with a new mission at Step 1. Otherwise, it proceeds

to Step 3, discussed below.
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Figure 16. Reflow Conditions

Step 3: Measuring the Impact of the Time Shift. A change to the network has been
implemented that could either improve or degrade the flow pattern of the channel cargo. The

impact of the change must now be determined.
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Since this step has been reached, the time shift has forced a transshipment arc to
become infeasible. Every commodity which flowed over that arc must be reflowed on a
different path which does not contain the most critical arc.

In order for a commodity to be reflowed, three conditions must be satisfied: (1) an
alternate path must exist over which the cargo can be flowed, (2) using this alternate path
maintains or reduces the CWTIS of the flow pattern, and (3) there must exist enough remaining
capacity on the alternate path to handle the reflowed commodity. If any one of these three
conditions is not satisfied, then the algorithm will not reflow the commodity and the time shift
is deemed inappropriate. The flow chart in Figure 16 demonstrates these checks. Each
condition is discussed in detail in the following paragraphs.

Checking Condition 1: The check of the impact of the shift begins by finding
all the paths which contain the most critical arc. The cargo flowed on these paths must be
reflowed on alternate paths since their original paths now contain an infeasible arc. Given a
piece of cargo that flowed along a single path, it is possible to split the cargo into several
pieces, in which case a set of alternate paths must be found. However, the schedule
improvement algorithm does not permit such division. Instead, for each piece of cargo that
must be reflowed, a single alternate path must be found to replace the original. It is left to
future research to explore dividing the cargo and flowing it over several alternate paths.

If no alternate path exists to reflow any piece of cargo, implementing the time shift forces that
cargo to go undelivered. Since Condition 1 has been violated, the algorithm proceeds to Step
4. If an alternate path does exist, Dijkstra's S-P algorithm returns a list of several candidate
alternate paths to choose from. Considering each of them in the order Dijkstra's S-P provides,
the algorithm proceeds to a check of Condition 2.

Checking Condition 2: Considering one of the candidate alternate paths
produced during the check on Condition 1, it must be determined whether reflowing along the
candidate path maintains or reduces CWTIS. CWTIS is likely to change. All cargo flowed
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along paths that reached their sink nodes directly from the shifted mission now reach the
customer sooner, so their WTISs are reduced. The cargo which flowed over the alternate path,
however, may have a higher WTIS than prior to the shift. The CWTIS of the pre-shift
network has been stored and is compared to the CWTIS of the post-shift network. If the post-
shift CWTIS is less than or equal to the pre-shift CWTIS, it is concluded that using the
alternate path does not degrade the flow pattern and the algorithm proceeds to the check on
Condition 3. If the CWTIS increases, the algorithm returns to Dijkstra's list of candidate paths
and continues to look for one which satisfies Condition 2. If none can be found, the algorithm
leaves Step 3 and proceeds to Step 4.

Checking Condition 3: By satisfying Conditions 1 and 2, an alternate path has
been found whose usage maintains or reduces CWTIS. This alternate path consists of arcs
which may have been used elsewhere. In order to re-route the cargo over this path, enough
capacity must exist on each of the arcs along it to handle the entire amount of the commodity
being re-routed. If a single arc cannot handle the flow, the algorithm retvns to Dijkstra's list
of candidate paths and continues to look for one which satisfies Conditions 2 and 3. If none
can be found, the algorithm leaves Step 3 and proceeds to Step 4.

If all conditions are satisfied, the original path over which the piece of cargo flowed is
temporarily replaced by the alternate path. The substitution is temporary pending the check of
Conditions 1, 2, and 3 for all other pieces of cargo which must be reflowed. If any piece of
cargo cannot be reflowed along a different path, the time shift degrades the network flow
pattern and the algorithm proceeds to Step 4. However, if all the affected cargo can be
reflowed, the time shift and changes to the path set become permanent and the algorithm starts
over with a new mission at Step 1.

Step 4: Reversal of the Time Shift. If a time shift degrades the flow pattern, failing
one of the above three conditions, the network must be restored to the pre-shift state stored in

temporary arrays. The mission start time may still be shifted by an amount that will not cause
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a transshipment arc to become infeasible. Such a time shift will equal the minimum of {the
mission start time, the cost of the most critical arc}. Since implementing this time shift causes
no transshipment arcs to become infeasible, there is no need to check to see if any cargo needs
to be reflowed. The algorithm then continues with the next mission at Step 1.

A single pass through the schedule improvement algorithm represents applying Steps 1
through 4 to the mission set once. After the user-specified number of passes (discussed below
in Section V.4.2), the algorithm generates the new schedule to be used in the next iteration of
the iterative improvement algorithm, along with distributions for the time-in-system for each

piece of flowed cargo and for the number of transshipments along each path used in the flow.

V.3 Requirements vs. Frequency Missions

Recall that there are two types of AMC channel missions. These are the requirements
missions and frequency-of-visit missions. As mentioned in Section V.2, the schedule
improvement algorithm only considers requirements missions when manipulating the schedule.
The remainder of this section discusses this restriction.

Frequency-of-visit missions, or simply frequency missions, are scheduled to occur at
specific intervals within a planning horizon rather than when a cargo requirement is generated.
If frequency missions were considered by the schedule improvement algorithm, their purpose
may become lost in the process. For example, suppose an embassy requires four visits per
monih and these four missions are initially scheduled every seven days. If these missions were
processed by the schedule improvement algorithm, all four missions could possibly be shifted
to the first week of the month or even the first day. This would clearly be in conflict with the
purpose of the frequency missions. To prevent this from happening, before the schedule
improvement algorithm shifts a mission's start time, it first confirms that the mission is indeed

a requirements mission. Frequency missions are Jeft unchanged.
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V.4 User-specified Parameters

The final solution is sensitive to certain parameters that are in the user's control.
Specifically, the user can choose the order in which the missions are shifted and the number of
passes through the schedule improvement algorithm.

V.4.1 Mission Order

The schedule improvement algorithm is a series of steps that are sequentially applied to
the mission set. The order of the missions exhibits some influence on the final solution, so it
is imperative to order them effectively. There are four orders from which the user can choose:
1) default, which is the order provided by STORM and CARGPREP, 2) reverse of the default,
3) descending mission utilization, and 4) ascending mission utilization. Mission utilization is a
weighted measure of how much of a mission's capacity was used. Chapter VI discusses the

role of this parameter with respect to the E/SWA sub-problem used in this research.

V.4.2 Passes Per Iteration of the Schedule Improvement Algorithm

Steps 1 through 4 discussed in Section V.2 represent a single pass through the mission
set. At the end of this pass, the solution is guaranteed to result in an equal or reduced CWTIS
for the flow pattern. However, a single pass does not make use of the information that is
constantly developing as mission start times are changed. Changes that are made to missions
later in the sequence may potentially create the possibility of additional changes to earlier
missions. Making multiple passes through the mission set allows more information to be used,
potentially leading to more improvement in the schedule. However, multiple passes obviously
require more time to accomplish, although each subsequent pass may not necessarily require
the same amount of time as the previous pass. The user must decide the trade-off between the
time required to make multiple passes and the additional improvement achieved by them. The

influence of this parameter is discussed in Chapter VI.
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V1.1 General

This chapter presents key results which demonstrate the viability of the iterative
improvement algorithm as discussed in previous chapters. The algorithm was implemented in
FORTRAN and the code for this program is contained in Appendix B. Input files for this

program are contained in Appendices H-K along with a discussion of their use.

V1.2 Testing Strategy
This section discusses the testing strategy used in this research, addressing the

objectives of the testing as well as the design of the testing scheme.

V1.2.1 Objectives

The primary objective of the testing was to demonstrate that the iterative improvement
algorithm converges on a good flow pattern for AMC's channel cargo system.

An additional objective was to provide justification for the reflow feature of the
schedule improvement algorithm. Recall that one of the essential differences between this
algorithm and the mathematical programming approach by Rau is the ability to reflow cargo
over different paths if doing so improves the flow pattern. Testing sought to demonstrate that
the reflow capability provides additional improvement. Finally, parametric analysis was
conducted on the user-defined parameters, such as the cargo flow priority, the order of the
missions, and the number of passes per iteration of the schedule improvement algorithm,
discussed in previous chapters. Testing shows the sensitivity of the final solution to

adjustments of these parameters.




VI1.2.2 Design of the Testing
In order to conduct parametric analysis, several sets of runs were performed, varying

the individual parameters as necessary. The primary parameters of interest were 1) the cargo
flow priority (the order in which commodities were flowed), 2) the order in which the missions
are examined in the schedule improvemeat algorithm, and 3) the number of passes per iteration
of the schedule improvement algorithm. The runs within each set have identical parameter
settings except for the parameter of interest.

While the reflow capability of the schedule improvement algorithm is not a user-
defined parameter, several pairs of runs of the program were performed to gauge its impact.
The first run in the pair allowed for cargo reflow; the second, using the same parameters as the
first, was run with the reflow mechanism disabled. Later sections graphically show the results.

To analyze these parameters, over 30 runs of the computer program were made. The
runs and their specific parameters are shown in Appeandix 0.

The data used for testing was the same data set used in Del Rosario's research: the
E/SWA sub-problem, representing 20 distinct commodities (229.99 tons total) arriving at the
origin airbases over a one-week period. The initial schedule for this sub-problem, shown in
Appendix 1, was generated using output from AMC's STORM and CARGPREP models. It

consists of 213 uﬁssions, requiring over 2,100 nodes in the network.

V1.3 Convergence of the Iterative Improvement Algorithm

The cargo flow and schedule improvement heuristics performed as expected in terms
of an iterative procedure that reduced the CWTIS. The procedure continued to iterate until
either the CWTIS could not be decreased or the overall quantity of cargo flow decreased.

Using Unix FORTRAN on a Sun workstation, overall run times ranged from 15 minutes to

approximately 2 hours.




The iterative improvemeant algorithm, in most cases, converged to a final solution with
a CWTIS of about 50% of the initial solution and all of the cargo flowed. Figure 17
demonstrates the reduction of CWTIS during iterations for test run number 8, which yielded
the lowest final CWTIS for total cargo flow (229.99 tons). On each successive iteration, the
improvement in CWTIS for the flow and schedule improvement algorithms tends to decrease,
indicating that as the process iterates, CWTIS becomes less sensitive to modifications of the
schedule. The final solution, with significant reduction in CWTIS, demonstrates a noticeable
shift in the distribution of tonnage versus TIS as seen in Figure 18. In all test runs (with
reflow capability in the schedule improvement algorithm enabled), the mode of the tonnage for
the distributions shifted from 1-2 days in the initial solution to 0-1 day in the final solution.
Note that the lowest UMMIPS time standard for these O-D pairs is four calendar days
(Robinson, 20 September 1993). Even in the initial solution, derived solely from the flow
algorithm, the quantity of cargo violating UMMIPS standards was less than five percent
(assuming a worst case UMIYPS standard of four days for all O-D pairs).

{day-tons)

Ker 1 Mer 2 Rer 3 Rord Ker & Ker ¢ Rer 7

M Flow Algorithm [0 Schedule improvement Algorithm

Figure 17. Reduction in CWTIS for Test Run 8
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VI.4 Justification for Reflowing Cargo

Reflowing cargo in the schedule improvement algorithm can be a very involved
process. This process can only be justified if it achieves a significantly improved flow pattern.

Sixteen pairs of test runs were performed (Appendix O). Each pair consists of one run
with cargo reflow and one run with the reflow mechanism disabled. Figures 19 through 21
show the impact of the reflow capability. Figure 19 shows the total percent reduction in

CWTIS for those runs in which the entire amount of cargo was flowed. As the figure
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indicates, allowing cargo to be reflowed results in approximately a 5-10% additional reduction

in the CWTIS.

As Figure 17 shows, for Run 8 the largest reduction in CWTIS occurred on the first

iteration. This held true for all the test runs. Figure 20 shows that with the reflow mechanism

disabled, the amount of reduction in CWTIS on the first iteration is reduced by about 8%.

Finally, Figure 21 shows how the lack of a reflow capability may result in more cargo

possibly violating UMMIPS standards, assuming that the commodities in this sub-problem are
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subject to a UMMIPS standard of four calendar days. This is a direct result of how the reflow
capability influences the time-in-system distribution of the commodities. In all test cases,
enabling the reflow capability shifted the mode of the time-in-system distribution from 1-2 days
to 0-1 days. However, in all test cases, the mode did not shift with the reflow mechanism
disabled. It is concluded that the reflow approach employed by the schedule improvement
algorithm provides enough additional benefit to warrant its use.

V1.5 Flowed Cargo

The user-defined parameters affected the amount of cargo flowed by the cargo flow
algorithm. The total amount of cargo in the E/SWA sub-problem was 229.99 tons. Not all of
the runs were able to flow the entire amouat. As shown in Figure 22, the amount of cargo
flowed ranged from a low of 202.78 tons in Run 9 to a high of 229.99 tons.

Recall that the iterative improvement algorithm continues to iterate only when
improvement is achieved. In all test runs in which all of the cargo (229.99 tons) was flowed,
that level was reached on the first iteration and was maintained throughout the remaining
iterations. In the test runs in which a lesser amount was delivered, the tonnage tended to grow
from iteration to iteration, indicating that changes made in the schedule improvement algorithm
changed the network sufficiently to allow the flow of additional cargo on subsequent iterations.
For example, Figure 23 shows how the cargo flowed on Run 5 grew throughout that run's four

iterations.

VI.6 Reflowed Cargo

The amount of cargo that was reflowed during each iteration of the flow/schedule
improvement algorithm varied greatly from run to run and from iteration to iteration within
each run in response to the user-specified parameters. Regardless of the parameters, the first

iteration always experienced the greatest reduction in CWTIS. It is not surprising that the
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Figure 22. Cargo Flowed
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Figure 23. Cargo Flowed on Run 5

first iteration typically, though not always, experienced the largest amount of cargo reflow
during Step Two. Figure 24 displays the amount of cargo reflowed on the first iteration for
each run using the E/SWA sub-problem. The flow values range from a high of 70.35 tons in
Run 8 to a low of 7.75 tons in Run 13. The chart values represent the percentage of the total

cargo reflowed.
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Figure 24. Percentages of Cargo Reflowed on First Iteration

V1.7 Parametric Analysis
This section addresses the influence on the final solution of the following parameters:
1) cargo flow priority, 2) mission order, and 3) the number of passes per iteration of the

schedule improvement algorithm.

V1.7.1 Cargo Flow Priority

Equal cargo priority is not possible due to the successive nature of the flow algorithm.
The cargo nodes that are selected first by the algorithm have a higher probability of being
flowed with lower TIS compared to cargo nodes that are flowed later. This is due to less
available capacity on the channel missions as more and more cargo is flowed. This
phenomenon is called cargo preference, since certain cargo appears to receive preferential
treatment by the cargo flow algorithm. Given O-D pairs with relatively small initial cargo
quantities, the order of cargo flow in the algorithm becomes less significant since less network
capacity is used. For the original E/SWA sub-problem with normal cargo levels, the order of
cargo flow had no effect on the initial cumulative flow quantity (all cargo was flowed). With
runs of the E/SWA sub-problem with the same flight schedule and collection of commodities,

but all cargo quantities multiplied by a factor of ten (resulting in total cargo equal to 2299.90
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tons), the effect of cargo flow order became readily apparent. These runs (Runs 33-35) are
described in Appendix O. The results are summarized in Table 1.

Options for cargo flow priority include: 1) arbitrary, which is the order the
commodities are listed in the cargo input file, 2) first in-first out (FIFO) based on time, and 3)

progressing from the largest quantities to the smallest.

Table 1

The Effect of Cargo Flow Priority on the Final Flow Pattern

Cargo
Run Flow Final Final
Number Priority Flow CWTIS
1 default 2115.1 18151
2 FIFO 2298.9 21974
3 quantity 2227.7 20170

When the commodities were flowed according to their location in the cargo input file,
the final flow pattern did not flow all of the cargo. Many of the last commodities selected
could not be flowed due to the high utilization of the channel missions. When the cargo nodes
were flowed according to quantity (largest quantities first), the flow quantity was improved
over the default. When the cargo nodes were flowed according to time (first in, first flowed),
the flow quantity was greatest.

The difference among these options on cumulative flow quantity and CWTIS has been
observed to increase as cargo quantities increase. The FIFO criteria, though allowing the most
cargo flow in this test case, cannot be guaranteed as superior in all cases.

A possible benefit of cargo preference is the capability to flow any high priority cargo

as expeditiously as possible. We can create a single cargo generation node with that high

52




priority commodity's characteristics. By flowing it through a network in which no other
commodities have been flowed, the user can determine the fastest possible routing of that
commodity to get it to its destination. This capability would be beneficial when flowing small
size/weight commodities that are mission essential. For example, a small electronic component
could be flowed independeatly under the assumption that its size and weight are negligible to
the flow of the other commodities.

V1.7.2 Mission Order

The choice of the mission order exerted some influence on the final solution. This
section explores this influence by comparing runs with various mission sorting criteria. Using
Runs 1 - 16 as shown in Appendix O, we created four sets of runs: Set 1 = {Runs 1, §, 9,
and 13}, Set 2 = {Runs 2, 6, 10, and 14}, Set 3 = {Runs 3, 7, 11, and 15}, and Set 4 =
{Runs 4, 8, 12, and 16}.

Although the sets differ in various parameter settings, the four runs within each set
differ only in the mission order parameter. The first run within each set sorts the missions
according to the default (the order provided by STORM and CARGPREP). The second run
within each set sorts the missions in the reverse order relative to the default. The third run
within each set sorts the missions according to descending mission utilization. The last run
within each set sorts the missions according to ascending mission utilization.

Figures 25 through 28 show how the delivered cargo and associated CWTIS differ
within Sets 1, 2, 3, and 4, respectively. Table 2 shows the best and worst mission orders
within each set. In some sets, there are multiple entries in these two categories. Some runs
within the sets were essentially equal, making it misleading to identify only one order as the
best or worst. For example, in Set 1 the best order is listed as either the default order or the
order based on ascending utilization, corresponding to Runs 1 and 13, respectively. Run 1

achieved a flow of 211.93 tons, compared to 212.07 tons in Run 13. Since these amounts are
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Figure 28. Comparison of Set 4

virtually equal, we looked at CWTIS to further distinguish the two runs. Run 1 achieved a
CWTIS of 247.32 day-tons, while Run 13 achieved 241.72 day-tons. Again, these values are
virtually equal, making it difficult to label either as the definitive best.
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Table 2

Best and Worst Mission Orders
Set Best Mission Order Worst Mission Order
default or reverse default or
1 ascending utilization descending utilization
default or reverse default or
2 ascending utilization descending utilization
reverse default or default or
3 ascending utilization descending utilization
default or
reverse default or
4 ascending utilization descending utilization

From the table, we see that ascending mission utilization achieved a better flow pattern
than descending utilization in all cases. Additionally, ascending wtilization seems to be the
superior method for mission ordering with these data sets. These results are based on the
E/SWA sub-problem and cannot be extended with certainty to other data sets without further

testing.

VI.7.3 Passes Per Iteration of the Schedule Improvement Algorithm

Testing established that allowing the algorithm multiple passes leads to a better final
solution than the final solution with only a single pass of the schedule improvement algorithm.
This section presents, through a comparison of key runs, the magnitude of the solution
difference when using multiple versus single passes through the schedule improvement

algorithm.

56




As mentioned earlier, the best solution occurred on Run 8, which allowed multiple
passes. Run 8 was regenerated with the pass parameter reset to 1 (a single pass). The results
of the two runs are compared in Table 3 below. As the table reveals, increasing the running
time of the program resulted in an additional 7% reduction in CWTIS.

Table 3
Influence of the Number of Passes on the Solution

Iterations Time Final Final reduction

Run Passes Required (relative) Flow | CWTIS | in CWTIS
8 multiple 6.5 1.00 229.99 | 231.44 52%
8 single 4.5 0.25 229.99 | 262.97 45%

We now examine in more detail the flow patterns produced by these two test runs.
Table 4 and Figure 29 show the time-in-system distributions of the cargo flow for the two
runs. With multiple passes, the CWTIS is reduced by an additional 7% over the single pass.
This directly equates to more cargo spending less time in the system. As the table shows, 64%
of the cargo spends less than one day in the system in the multiple-pass scenario, compared to
only 51% in the single-pass scenario. Furthermore, the single-pass scenario has 0.83 tons of
cargo spending more than four days in the system, potentially violating UMMIPS standards.
By sacrificing running time, the user can obtain a substantially improved schedule with the
multiple pass option. It should be noted that the user sets a maximum number of passes per
iteration. In the run above, this was set to 10, but no more than five passes were ever required

on any iteration.
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Table 4

TIS Distributions for the Multiple- and Single-Pass Run 8

Multiple Pass Single Pass
Days in Tonnage % Total Days in Tonnage % Total
System Delivered | delivered System Delivered | Delivered
0-1 148.04 64% 0-1 116.81 51%
1-2 62.46 27% 1-2 86.44 38%
2-3 15.717 7% 2-3 21.16 9%
3-4 3.72 2% 3-4 4.75 2%
4-5 0.00 0% 4-5 0.83 <1%
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Figure 29. TIS Distributions for Run 8

58




VII. Conclusions and Recommendations

VII.1 General

The overall research objective, which was to develop an iterative process for efficiently
scheduling airlift and flowing cargo, was achieved. The iterative improvement algorithm,
consisting of the heuristic flow and schedule improvement steps, effectively increases the level
of channel cargo flow while reducing CWTIS.

This chapter discusses some of the strengths of the iterative improvement algorithm as

well as possible avenues for improvement or modification.

VI1.2 Strengths of the Iterative Improvement Algorithm

The iterative improvement algorithm provides a timely solution. For the E/SWA sub-
problem with 20 commodities and 213 missions, overall run times ranged from approximately
fifteen minutes to two hours. This time varies with certain parameters: the maximum number
of transshipments allowed, the relative quantities of the individual cargo nodes, and the number
of passes through the schedule improvement algorithm per iteration. All of the test runs were
accomplished on a Sun workstation usirz Unix FORTRAN.

The iterative improvement algorithm is highly compatible with the current AMC
scheduling process, making validation with CARGOSIM fairly straightforward. FORTRAN
code was written to preprocess STORM and CARGPREP output into data formats that are
input directly into the iterative improvement algorithm. This code is listed in Appendix C.

VII.3 Recommendations for Future Research

As discussed in Chapter IV, the cargo flow heuristic follows the basic steps of the
Busacker-Gowen min-cost flow algorithm, excluding the addition of reverse arcs into the
network. These arcs were deemed detrimental in terms of computational efficiency and flow

path control. If these reverse arcs could be introduced into the network without producing
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these negative effects, the solution of the cargo flow heuristic could be improved. This
addition would necessitate modifications to the S-P algorithm since Dijkstra's algorithm can
only process nonnegative arc costs.

The flow algorithm terminates calls to Dijkstra’s S-P algorithm whenever a path is
found which exceeds the maximum allowable number of transshipments. This means that the
current commodity will get no further attempts at flow paths of longer TIS with possibly fewer
transshipments. The code could be extended to cover this contingency.

The flow of a commodity is "yes-or-no” and is predicated on determination of a path
Jrom origin to destination. Consideration should be given to flowing these goods to an
alternate destination. For example, if AMC were attempting to deliver a piece of cargo from
the Continental United States (CONUS) to the European theater, say Dover AFB to Rhein-
Main AB, the S-P algorithm might return a "no" condition, implying that there are no paths
(i.e. missions) that can get the cargo there within the current planning horizon. Certainly,
getting the cargo to another, alternate destination in close proximity to the original destination
would seem preferable to leaving it in the CONUS. Once in theater, other modes of
distribution, such as ground transportation, could be used. In AMC's case, transporting the
cargo to Ramstein, Bitburg, etc. could be the next best thing; at least the cargo is closer to its
destination if it is carried over into the next planning horizon. The methodology does not
currently attempt this, since no alternate destination data was available. However, the
extensions to the code would be minimal.

The network, if the parameters allow for it, will generate transshipment arcs of zero
time length. In real life, this would translate into a frantic loadmaster, unable to download and
upload cargo in zero time. This condition was allowed to exist due to the uncertainty of many
of the model parameters. Takeoff times, as well as flying times between airbases, are
approximate expected values subject to variation. Additionally, aircraft commanders, if given

knowledge of the upcoming requirement for cargo download, can often adjust flying times
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appropriately when needed. This is considered a minor drawback of the algorithms. If this
assumption is not acceptable, the network generator can be changed to establish transshipment
arcs only when a minimum time differential is present.

An assumption in Chapter I stating that airbases can handle unlimited aircraft and
cargo and are available 24 hours a day may not be realistic. The schedule improvement
algorithm could, if conditions were right, shift the mission set so that particular airbases could
become overwhelmed with aircraft. AMC refers to this as a MOG violation, where MOG is
the maximum number of aircraft on the ground that an airbase is equipped to handle. There
currently is no feasibility check within the algorithm to prevent this phenomenon. The
algorithm could also reschedule a mission for any time of day, which may be unrealistic. Both
of these limitations could be addressed in future research at AFIT or AMC.

The schedule improvement algorithm only implements time shifts to an earlier time.
While it seems almost counter-intuitive to shift a mission to a later time in order to reduce the
CWTIS, such a possibility exists. In the current methodology, a reduced CWTIS does not
necessarily mean that all the cargo reached the customer sooner. While some cargo admittedly
may reach a customer later because of the time shift, the savings the shift brings to the overall

flow pattern may warrant such a shift.

VII.4 Validation

Following this research, the next logical step is for AMC or AFIT to test this approach
in conjunction with STORM, CARGPREP, and CARGOSIM. The testing should evaluate the
quality of the output schedule and the usefulness of the procedure developed in this research.
Appendix A outlines all necessary steps and data structures to implement and integrate the

iterative improvement algorithm within AMC's current advance planning process.

61




Appendix A: Program Execution Guide

This appendix contains the program execution guide, which is intended to aid the user
in compiling, running, and interpreting the output of the iterative improvement algorithm (main
program, Appendix B) developed in this research. Data input/output files and structures are
addressed as necessary and appendix reference is provided, if applicable.

The main program was developed to interface with the STORM and CARGPREP
output. To facilitate this, a FORTRAN program "makesked.f” (Appendix C) was written to
preprocess the STORM and CARGPREP output and generate the "schedule.dat” file that is
input into the main program. Makesked.f requires the following input files: schedule.raw
(Appendix D), jet.dat (Appendix E), fly.dat (Appendix F), and routes.dat (Appendix G).

'The main program requires the following input files : cargo.dat (Appendix H),
schedule.dat (Appendix I), param.dat (Appendix J), and trnbases.dat (Appendix K).

Once all of the necessary files (Appendices B-K and Appendix P) have been placed into
the current working directory, perform the following steps:

1) Compile and run the "makesked.f” program.

2) Edit the "param.dat” file to select the required values for the user-specified
parameters.

3) Compile and run the main program ("iterate.f™).

4) The user can monitor the main program through on-screen output. The current
iteration and subroutine are displayed.

5) At program termination, the following output files will be preseat ("xxx" prior to
the ".c" extension will contain th. ... ation number (e.g. "001") when the file was
created): postxxx.c (Appendix 122h8xxx.c (Appendix M), run.c (Appendix N),
cflowxxx.c (Appendix L), network . Jat, iterate.out, alt.out, alt2.out, paths.out, and
count.out. Some of the output files are used by the program during execution and are
not shown in an appendix. The purpose and format of these files are discussed within
the main program commeats.

6) To convert the schedule created by "iterate.f" into the format required for validation
by CARGOSIM, compile and run the program "makeraw.f" (Appendix P).
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Appendix B: Main Program Listing

This appendix contains the main program listing written in Unix FORTRAN 77. The
program contains the iterative improvement algorithm as well as all supporting subroutines,
including the cargo flow heuristic ("CARGFLO") and the schedule improvement heuristic
("MODMSN"). Instructions for compiling and running this program are contained in the
Program Execution Guide at Appendix A.

PROGRAM ITERATEF

SRS EEESEBR SRS EESEEES NSRS SRS IS RRES SR

* ITERATIVE IMPROVEMENT ALGORITHM

*

* MAIN PROGRAM CODE

*
SREESEEEESSESE S SR BESS PSSO CRBAS LSS ESESS SR RSRSSEEBER RS

INTEGER N,NUMCAR ,NUMSNK ,NUMMSN,ITER ,FLONUM(4999)
INTEGER POINT(4999,2)

INTEGER ARCNUM

INTEGER MAXIT,MAXALT,MAXTRN,CARCRI,PASSES
INTEGER TRNDIS(60),TRNS(500)

INTEGER SORCRI,TRNSHIP,TERCRI

REAL TOTFLO,TOTAL,BEST,INF,MODFLO
REAL COSCAP(89999,8),NODES(4999,4), TNODES(4999,4)
REAL PRED(4999),DIST(4999),INF

REAL EPSILON,TISDIS(60), TIMEPS

CHARACTER NODIKO(4999,2)*4, SKEDLN*80

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /PARAMS/ MAXIT,MAXALT,MAXTRN,CARCRI,PASSES,SORCRLTIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /SCHED/ FLONUM

C THE FOLLOWING ALLOWS schedule.dat TO REMAIN THE SAME. THE SUBROUTINES
C WILL USE newsched.dat.

OPEN(UNIT=1,FILE="schedule.dat’,STATUS="OLD',FORM="FORMATTED")
OPEN(UNIT=2,FILE="ncwsched.dat’,STATUS="UNKNOWN',FORM="FORMATTED")
OPEN(UNIT=7,FILE='run.c', STATUS="UNKNOWN',FORM="FORMATTED")

DO 11=1,999999999
READ(1,3,END=2)SKEDLN
WRITE(2,3)SKEDLN

3 FORMAT(AS0)
CONTINUE
2 CLOSE(1)

—
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CLOSE(2)
C FOLLOWING WILL READ IN param.dat valucs
OPEN(UNIT=1,FILE="param.dat',STATUS='OLD',FORM="FORMATTED")
READ(1,*) MAXIT
READ(1,*) MAXALT
READ(1,*) MAXTRN
READ(1,*) CARCRI
READ(1,*) SORCRI
READ(1,*) PASSES
READ(1,*) TRNSHIP
READ(1,*) EPSILON
READ(1,*) TIMEPS
WRITE(7,*)'Parameters:’
WRITE(,*)
WRITE(7,1 DMAXIT

11 FORMAT(4,4X,MAXIT)
WRITE(7,12)MAXALT

12 FORMAT(4,4X,MAXALT)
WRITE(7,13)MAXTRN

13 FORMAT(4,4X,MAXTRN")
WRITE(7,14)CARCRI

14 FORMAT(14,4X,/CARCRYI")
WRITE(7,16)SORCRI

16 FORMAT(4,4X,'SORCRI)
WRITE(7,17)PASSES

17 FORMAT(4.4X,'PASSES’)
WRITE(7,18)TRNSHIP

18 FORMAT(14,4X,; TRNSHIP")
WRITE(7,19)EPSILON

19 FORMAT(F5.3,3X,'EPSILON")
WRITE(7,21)TIMEPS

21 FORMAT(F5.4,3X, TIME EPSILON")
WRITE(7,*)
WRITE(7,*)
CLOSE(1)
INF=99999999.9
TOTFLO=0.0
TOTAL~0.0
BEST=INF
MODFLO=0.0
ITER=1
OPEN(UNIT=10,FILE="itcrate.out’,STATUS="UNKNOWN',FORM="FORMATTED")
WRITE(10,*)
WRITE(10,*)>>>>>> iterate.out <<<<<<'
WRITE(10,*)
WRITE(*,*)NETMAKE CALLED'

5 CALL NETMAKE(TRNSHIP)
WRITE(*,*)’CARGFLO CALLED'
WRITE(7,*YCARGFLO CALLED'
CALL CARGFLO(TOTFLO,TOTAL)
WRITE(*,*)TOTFLO,TOTAL
WRITE(7,*)TOTFLO,TOTAL




C CRITERION FOR TERMINATION
IF((ABS(TOTFLO-MODFLO).LT.EPSILON)) THEN
IF(TOTAL.GT.BEST)) GOTO 10
IF(ABS(TOTAL-BEST).LT.EPSILON) GOTO 10

ENDIF
IFCTOTFLO.LT.MODFLO) GOTO 10
IF (ITER.GT.MAXIT) THEN
WRITE(10,*)
WRITE(10,*) MAX NUMBER OF ITERATIONS EXCEEDED.'
GOTO 10
ENDIF
WRITE(*,*)POSTPROC CALLED'
CALL POSTPROC(Q)
WRITE(*,*)COUNTER CALLED’
CALL COUNTER(Q)
WRITE(*,*)PREMOD CALLED'
CALL PREMOD()
WRITE(*,*)MODMSN CALLED'
WRITE(7,*)MODMSN CALLED'
CALL MODMSN(BEST,MODFLO,TOTAL,TERCRI)
WRITE(*,*)MODFLO,BEST
WRITE(7,*)MODFLO,BEST
IF(TERCRLEQ.1) GOTO 10
WRITE(10,*)
WRITE(10,*) ITERATION: ITER
WRITE(10,*) CARGO FLOWED (TONS): ", TOTFLO
WRITE(10,*y TOTAL CHANNEL COST (DAY-TONS): ', TOTAL
WRITE(*,*)ITERATION " ITER,' COMPLETED.'
WRITE(*,*)" *
WRITE(7,*YITERATION "ITER, COMPLETED."
WRITE(7,*)' *
ITER=ITER+1
GOTO §

10 WRITE(10,*)
WRITE(10,*) NO FURTHER IMPROVEMENT - TERMINATED."
CLOSE(10)

20 STOP
END

¢ NETWORK GENERATOR ALGORITHM FOR THE CHANNEL CARGO SYSTEM
c

¢ PROGRAM WILL READ DATA FILES ‘cargo.dat' AND

¢ 'mewsched.dat’ AND GENERATE THE NETWORK TO

¢ INPUT INTO THE BUSACKER-GOWEN MINIMUM COST FLOW
¢ ALGORITHM. OUTPUT FROM PROGRAM WILL GO INTO FILE
¢ 'network.dat’, WHICH WILL HAVE A STANDARDIZED FORMAT:
c

¢ VARIABLES USED:

c

¢ N : NUMBER OF NODES IN THE NETWORK

¢ NUMCAR : NUMBER OF CARGO NODES IN THE NETWORK

¢ NUMSINK : NUMBER OF SINK NODES IN THE NETWORK
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¢ INF: VALUE OF INFINITY USED IN ARRAYS

C

¢ COSCAP: Nx8 MATRIX OF ARC COSTS/CAPACITIES/FLOWS

RS o NeNe RN o Neo RN Mo R Mo I BN NeNoNo Yoo oo ko ko Ko ko ke Ro X o Ko Ko Ko Ko Re N o Rk NS

AS WELL AS TEMP STORAGE FOR THESE VALUES
COSCAP IS A MODIFIED 'LINKED ADJACENCY LIST THAT
LISTS THE FORWARD STAR FOR ALL NODES WITHIN THE NETWORK
ARRAY 'POINT WILL BE A POINTER ARRAY FOR THE STAR FROM
THE SPECIFIED NODE (SEE BELOW). COSCAP IS FORMATTED:

COSCAP(X,1): END NODE OF ARC X

COSCAP(X,2): COST (TIME) OF GIVEN ARC

COSCAP(X,3): CAPACITY (TONS) OF GIVEN ARC
COSCAP(X,4): FLOW (TONS) OF GIVEN ARC

COSCAP(X,5): TEMPORARY COST (TIME) OF GIVEN ARC
COSCAP(X,6): TEMPORARY CAPACITY (TONS) OF GIVEN ARC
COSCAP(X,7): TEMPORARY FLOW (TONS) OF GIVEN ARC
COSCAP(X,8): MISSION (#) WHICH ARC TERMINATES TO

POINT: Nx2 MATRIX OF POINTER LOCATIONS FOR NODES:

POINT(Y,1): FIRST ARC LOCATION IN COSCAP FOR NODE Y
POINT(Y,2): LAST ARC LOCATION IN COSCAP FOR NODE Y

IF A GIVEN NODE HAS NO FORWARD STAR (NO ARCS BEGINNING
THERE), THEN POINT(N,1),POINT(N,2) WILL EQUAL -1.

NODES : Nx4 MATRIX DESCRIBING NODE SET IN NETWORK

(N,1) COLUMN IS NODE DESCRIPTOR, WHERE:
-1: CARGO GENERATION NODE ATN
0: SINK NODE AT NODEN
1: NODE N REPRESENTS A MISSION AIRBASE ORIGIN
(FIRST BASE FOR THE ROUTE)
2 : NODE N REPRESENTS AN INTERMEDIATE MISSION AIRBASE
3 : NODE N REPRESENTS A MISSION AIRBASE DESTINATION
(LAST BASE FOR THE ROUTE)
{N,2) COLUMN IS NODE TIME
(N,3) COLUMN IS TONS OF CARGO FOR A CARGO GEN. NODE
ACCAPA STORED HERE FOR MISSION LEGS BETWEEN
DISTINCT AIRBASES, INF FOR GROUND/RON TIME
DURING A MISSION
(N,4) COLUMN IS THE MISSION NUMBER ASSOCIATED WITH
THE GIVEN AIRBASE (0 FOR SOURCE/SINK NODES)
MISSION NUMBERS ASSIGNED FROM 001 ASCENDING

NODIKO : Nx2 MATRIX (BOTH FIELDS CHARACTER) DESCRIBING NODES

(N,1) COLUMN IS ORIGIN AIRBASE IDENTIFIER FOR A
CARGO GENERATION NODE (N,1)=-1 ABOVE
THIS WILL ALSO APPLY FOR A SINK NODE (N,1)=0
WHERE THE VYALUE IN (N,3) WILL BE THE NUMBER
IDENTIFIER OF THE AIRBASE THE NODE SINKS FOR.
FOR A MISSION AIRBASE, THIS WILL BE ITS ICAO.
(N,2) COLUMN IS DESTINATION AIRBASE IDENTIFIER FOR




c A CARGO GENERATION NODE ABOVE

c

¢ ACTYPE: AIRCRAFT TYPE IDENTIFIER (CHARACTER®4) (1.E. C141)
¢ ACCAPA : CORRESPONDING AIRCRAFT CAPACITY IN TONS (L.E. 20)
c (THIS WILL BE MISSION LEG ARC CAPACITY)

¢ ARCNUM : COUNTER FOR NUMBER OF ARCS CREATED THUS FAR

SUBROUTINE NETMAKE(TRNSHIP)

INTEGER N,K,TEMP

INTEGER NUMCAR NUMSNK,NUMMSN,N,ITER,ARCNUM
INTEGER WEEK,UNIQUE

INTEGER POINT(4999,2)

INTEGER TRNDIS(60),TRNS(500)

INTEGER TRNSHIP,NOTRBS NUMNOD

REAL COSCAP(89999.8)

REAL NODES(4999,4), TNODES(4999,4)
REAL INF,DIST(4999),PRED(4999)
REAL ACCAPA,COSTMP,CAPTMP
REAL TMP,DELTA

REAL DAYCUM(8),RATIO

REAL EPSILON,TISDIS(60)

CHARACTER NETNAM*8,NS*3,EXT*2,POS(3)*1
CHARACTER*4 NODIK0O(4999,2)
CHARACTER*4 ORIGIN,DEST,ACTYPE
CHARACTER*4 TRNBAS(499)

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

ACCAPA=0.0
=0
NUMCAR=0
NUMSNK=0
ARCNUM=0
DAYCUM(1)=0.0
¢ INITIALIZE DATA ARRAYS
DO 250 1=1,89999
DO 260 J=1,7
COSCAP(,1)=0.0
260 CONTINUE
250 CONTINUE
DO 255 1=1,4999
NODES(,1)=0.0
NODES(1,2)=0.0
NODES(1,3)=0.0
NODIKO(,1)=" *
NODIKO(1,2)=" *
255 CONTINUE
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C IF TRNSHIP=1, ‘tmbascs.dat' READ TO LIMIT TRANSSHIPMENT BASES
IF (TRNSHIP.EQ.1) THEN
OPEN(UNIT=1,FILE="tmbascs.dat’, STATUS='OLD',FORM="FORMATTED")
READ(1,*)NOTRBS
DO 257 I=1,NOTRBS
READ(1,*)TRNBAS()
257 CONTINUE
CLOSE(1)
ENDIF
OPEN(UNIT=1,FILE="cargo.dat',STATUS="OLD' FORM="FORMATTED")
C CARGO.DAT MODIFIED FROM PREVIOUS FORMAT IN ORDER TO FACTOR THE
C WEEK INTO THE CARGO GENERATION SCHEME. ADDITIONAL COL. ADDED AFTER
C THE INITIAL TWO ICAOS IN ORDER TO INDICATE WHICH WEEK OF THE PLANNING
C HORIZON THE SEVEN SUBSEQUENT COLUMNS REPRESENTED (STARTS @ WEEK 0)
DO 200 I=1,99999999
READ(1,201, END=202)ORIGIN,DEST,WEEK,(DA YCUM(J),J=2,8)
201 FORMAT(A4,1X,A4,1X,12,7(F7.2))
DO 203 =28
IF (DAYCUM(J).GT.DAYCUM(-1)) THEN
N=N+1
NODES(N,1)=-1
NODES(N,2)=(WEEK*7.0)+(J-2)
NODES(N,3)=DA YCUM(J)-DA YCUM(J-1)
NODIKO(N,1)=ORIGIN
NODIKO(N,2)=DEST
ENDIF
203 CONTINUE
200 CONTINUE
202 CONTINUE
¢ STORE WHERE REMAINDER OF NODES SHOULD PICK-UP AFTER CARGO GEN NODES
NUMCAR=N
OPEN(UNIT=2,FILE="ncwsched.dat,STATUS="OLD',FORM="FORMATTED")
READ(2,*)NUMMSN
DO 206 I=1,NUMMSN
READ(2,204)NUMNOD,ACTYPE,ACCAPA
204 FORMAT(3,1X,A4,F5.1)
C FOLLOWING DISTINQUISHES BETWEEN MISSION AIRBASES
DO 207 J=1 NUMNOD
N=N+1
IF (J.EQ.1) THEN
NODES(N,1)=1
ENDIF
IF (J.GT.1).AND.(J.LT.NUMNOD)) THEN
NODES(N,1)=2
ENDIF
IF (J.EQ.NUMNOD) THEN
NODES(N,1)=3
ENDIF
READ(2,*)NODIKO(N,1),NODES(N,2)
NODES(N,3)=ACCAPA
NODES(N 4)=I
207 CONTINUE




206 CONTINUE
¢ NOW TO PRODUCE THE SINK NODES, WHICH WILL BE DETERMINED BY SCANNING ALL
¢ OF THE CARGO GENERATION NODES' DESTINATIONS (NODES(N,1)=-1=>CARGO NODE),
¢ USE ICAO OF NODIKO(N,2) AS SINK IDENTIFIER.
¢ THE SINK MATRIX IS SCANNED, THEN A NEW SINK NODE IS CREATED EVERY TIME
¢ A DISTINCT SINK ICAO APPEARS.
DO 209 I=1,NUMCAR
UNIQUE=1
DO 210 J=1,]-1
IF (NODIKO(1,2).EQ.NODIKO(J,2)) THEN
UNIQUE=0
ENDIF
210 CONTINUE
¢ CREATE DISTINC: SINK NODE IF UNIQUE=1
IF (UNIQUE.EQ.1) THEN
NUMSNK=NUMSNK-+1
N=N+1
NODES(N,1)=0
NODIKO(N,1)>NODIKO(1,2)
ENDIF
209 CONTINUE
C NOW THAT NODES/NODIKO ARE CREATED, THE LINKED ADJACENCY LIST
C NEEDS TO BE CREATED BY GOING NODE BY NODE THROUGH THE NETWORK
C (EXCLUDING THE SINK NODES AT THE BOTTOM WHICH WILL HAVE NO NODES
C ORIGINATING FROM THEM) AND LISTING INFO FOR ALL ARCS EMANATING
C FROM THE SPECIFIED NODE

DO 350 K=1,N-NUMSNK
POINT(K,1)=ARCNUM+1
C ADD ARCS TO CONNECT CARGO TO ORIGIN AIRBASES BELOW:
C (RETAIN ALL ARCS VERSUS SINGLE ARC FROM CARGO TO ORIGIN
C AIRBASE OF LEAST TIME, IN CASE TRANSSHIPMENTS ARE RESTRICTED
C IN THE FUTURE (L.E. CERTAIN BASES NOT ALLOWED TO TRANSSHIP))
IF (K GT.NUMCAR) GOTO 215
DO 220 J=NUMCAR+1,N-NUMSNK
IF(NODIKO(J,1).EQ.NODIKO(K, 1)) THEN
IF(NODES(J,2). GEINODES(K,2)) THEN
ARCNUM=ARCNUM+1
COSCAP(ARCNUM,1)=]
COSCAP(ARCNUM,2)=NODES(J,2)-NODES(K,2)
C™, CAP(ARCNUM,3)=INF
ENDIF
ENDIF
220 CONTINUE
C THIS LOOP ADDS MISSION ARCS
215 IF ((K.GT.NUMCAR).AND.(NODES(K,1).LT.3)) THEN
ARCNUM=ARCNUM+1
COSCAP(ARCNUM,1)=K+1
COSCAP(ARCNUM,2)=-NODES(K+1,2)-NODES(K,2)
IF (NODIKO(X,1).NE.NODIKO(K+1,1)) THEN
COSCAP(ARCNUM,3)=NODES(K 3)
ELSE
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COSCAP(ARCNUM,3)=INF
ENDIF
ENDIF
C ADD ARCS TO ALLOW TRANSSHIPMENTS BELOW
C RESTRICTED TO A SPANNING PATH VERSUS ALL POSSIBLE
C ARCS PREVIOUSLY, WHICH WAS EXPLOSIVE.
C LOOP WILL SCAN MISSION NODES FOR A GIVEN ICAO AND
C LINK THEM IN A PATH BASED ON TIME SEQUENCE,
C NOTE: CYCLES MAY BE INTRODUCED TO THE PATH IF TWO
C AIRBASES WITH THE SAME ICAO HAVE THE SAME TIME
IF (K LENUMCAR) GOTO 245
C IF TRNSHIP=0, NO TRANSSHIPMENT ARCS ALLOWED; BYPASS.
IF (TRNSHIP.EQ.0) GOTO 245
C IF TRNSHIP=1, SCAN TRNBAS() TO CHECK IF ALLOWED.
IF (TRNSHIP.EQ.1) THEN
DO 239 I=1, NOTRBS
IF (TRNBAS(I).EQ.NODIKO(K,1)) GOTO 242
239 CONTINUE
GOTO 245
ENDIF
C INSTALL TRANSSIPMENT ARC
242 TMP=INF
J=0
DO 240 I=NUMCAR+] N-NUMSNK
IF (1.EQ.K) GOTO 240
IF ((1.EQ.K+1).AND.(NODES(K,1).LT.3)) GOTO 240
IF (NODIKO(1,1).EQ.NODIKO(K, 1)) THEN
DELTA=NODES(I,2)-NODES(K,2)
IF (DELTA.GT.0.0) THEN
IF (DELTA.LE.TMP) THEN
TMP=DELTA
J=1
ENDIF
GOTO 240
ENDIF
C BASES WITH THE SAME TIMES ARE LINKED AUTOMATICALLY
C (WILL BE IN BOTH DIRECTIONS WHEN THE I-LOOP IS DONE)
IF (DELTA.EQ.0.0) THEN
ARCNUM=ARCNUM+1
COSCAP(ARCNUM,1)=I
COSCAP(ARCNUM,2)=DELTA
COSCAP(ARCNUM,3)=INF
ENDIF
ENDIF
240 CONTINUE
C IF-THEN ESTABLISHES SINGLE ARC TO CLOSEST TIME AIRBASE
IF (J.NE.O) THEN
ARCNUM=ARCNUM+1
COSCAP(ARCNUM,1)=]J
COSCAP(ARCNUM,2)=NODES(J,2)-NODES(K,2)
COSCAP(ARCNUM,3)=INF
ENDIF
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¢ ADD 0 COST ARCS THAT CONNECT NODES TO SINKS BELOW:
245 IF (KLENUMCAR) GOTO 230
DO 235 J=N-NUMSNK+1,N
IF (NODIKO(J,1).EQ.NODIKO(K, 1)) THEN
ARCNUM=ARCNUM+1
COSCAP(ARCNUM, 1)=]
COSCAP(ARCNUM,2)=0.0
COSCAP(ARCNUM,3)=INF
GOTO 237
ENDIF
235 CONTINUE
237 CONTINUE
230 POINT(K,2)~ARCNUM
C IF-THEN DETERMINES IF ANY ARCS ORIGINATE FROM NODE K
IF (POINT(K,2).LT.POINT(K,1)) THEN
POINT(K,1)=-1
POINT(K,2)=-1
GOTO 350
ENDIF
C FOLLOWING LOOP SORTS ARCS FROM GIVEN NODE (ASCENDING)
C ALL CARGO NODES WILL BE SORTED, SKIP THIS LOOP
IF (K.LEENUMCAR) GOTO 350
IF (POINT(K,2).EQ.POINT(K,1)) GOTO 350
DO 352 I=POINT(K,1),POINT(K,2)
TEMP=-1
TMP=INF
DO 354 J=I,POINT(K.2)
IF (COSCAP(J,1).LE.TMP) THEN
TMP=COSCAP(J,1)
TEMP=J
ENDIF
354 CONTINUE
COSTMP=COSCAP(TEMP,2)
CAPTMP=COSCAP(TEMP,3)
COSCAP(TEMP,1)=COSCAP(,1)
COSCAP(TEMP 2)=COSCAP(1,2)
COSCAP(TEMP,3)=COSCAP(,3)
COSCAP(I,1)=TMP
COSCAP(I,2)=COSTMP
COSCAP(I,3)=CAPTMP
352 CONTINUE
350 CONTINUE
C FOLLOWING LOOP STORES -1 IN POINT FOR SINKS
DO 360 K=N-NUMSNK+1,N
POINT(K,1)=-1
POINT(K 2)=-1
360 CONTINUE

OPEN(UNIT=3, FILE="network.dat',STATUS="UNKNOWN' FORM=FORMATTED")

WRITE(3,*)N
WRITE(3,*)NUMCAR
WRITE(3,*)NUMSNK
WRITE(3,*)INF
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DO 290 I=1,ARCNUM
WRITE(3,365)1,(COSCAP(,]).J=1,4)
365 FORMAT(S,2x,F5.0,2x,F7.3,2x F13.2,2x,F9.3)
290 CONTINUE
DO 295 I=1,N
WRITE(3,370)L,(POINT(,J),J=1,2)
370 FORMAT(S 3x,15,3x,15)
295 CONTINUE
WRITEG,*)
DO 325 I=1N
WRITE(3,330)1,(NODES(1,3),J=1,3),(NODIKO(1,J),J=1,2)
330 FORMAT(S,1x,F5.1,2x,F6.2,2x,F7.2,2x A4,2x A4)
325 CONTINUE
340 CLOSE(1)
CLOSE(2)
CLOSE(3)
RETURN
END

CARGO FLOW ALGORITHM

variable CARCRI uscd to vary cargo flow sequence:
CARCRI=1 ->Default, flowed in order of cargo.dat
CARCRI=2 ->Flowed in ascending arrival time order
CARCRI=3 ->Flowed in descending cargo quantity

code applics successive shortest path implementation
adjusting the network capacity as it gocs along

¢ (uses DIJKSTRA and not 'PDM to find path)

C

¢ Armay TISDIS added to track distribution of cargo flow
¢ based on time-in-system.

006 0606 6660606

SUBROUTINE CARGFLO(TOTFLO,TOTAL)

INTEGER N,S,T,1LJ,QR

INTEGER FLPATH(4999),FLNUM,CURNODE

INTEGER STPATHNUMCAR NUMSNK NUMMSN,ITER,TEMP
INTEGER POINT(4999,2)

INTEGER ARCNUM,ARCTMP

INTEGER BST,WST,LOTRN

INTEGER CARGPT(4999),SORT(4999)

INTEGER TRNDIS(60), TRNS(500)

INTEGER MAXIT,MAXALT MAXTRN,CARCRI,PASSES,SORCRI

REAL CURREN,DELTA,D,TARGET,TOTAL,INF,RATIO

REAL COSCAP(89999,8)

REAL PRED(4999),DIST(4999),NODES(4999,4), TNODES(4999,4)
REAL COMCOST,TOTFLO

REAL CAPALJFLOWL)

REAL EPSILON,TISDIS(60), TIMEPS




CHARACTER*4 APOEAPOD
CHARACTER*4 NODIKO(4999,2)
CHARACTER MCNAM®*10NS*3 EXT*2,POS(3)*1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER, EPSILON
COMMON /PARAMS/ MAXITMAXALT,MAXTRN,CARCRI,PASSES,SORCRI,TIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

TOTFLO=0.0
UNFLOW=0.0
TOTAL=0.0
OPEN(UNIT=4,FILE="paths.out', STATUS="UNKNOWN'FORM="FORMATTED")
OPEN(UNIT=11,FILE="alt.out',STATUS="UNKNOWN',FORM="FORMATTED")
¢ FLOW/TCOST must be stored thru all commoditics
DO 450 I=-1, ARCNUM
COSCAP(1,4)=0.0
COSCAP(1,5)=COSCAP(1,2)
COSCAP(1,6)=COSCAP(1,3)
COSCAP(1,7)=0.0
450 CONTINUE
DO 452 I=1,60
TRNDIS(1)=0
TISDIS(1)=0.0
452 CONTINUE
¢ following scans nctwork for all cargo nodes and determines
¢ Source (S) and Sink (T) to be used for B-G algorithm
c
¢ assumed that all cargo gencration nodes will be the first
¢ nodes 1-NUMCAR in the network (this is the way 'netmake.f
¢ generates them from cargo.dat and newsched.dat)
* THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION
TEMP=ITER
EXT="¢'
DO 451 1=2,0,-1
RATIO=INT(TEMP/(10**]))
TEMP=TEMP-RATIO*(10**])
POS(1+1)=CHAR(48+RATIO)
451 CONTINUE
NS=POS(3)//POS(2)//POS(1)
MCNAM="cflow'//NS//EXT
OPEN(UNIT=5,FILE=EMCNAM,STATUS="UNKNOWN',FORM=FORMATTED")
WRITE(S,*) <<<<<<<<<<<<<<< CARGFLO.QUT >>>>>5>>>>>>>>>"
WRITE(,*)
GO TO (420,422,424,426), CARCRI
420 WRITE(S,*)'Flow scquence based on order in carg~ dat'
GOTO 428
422 WRITE(S,*)'Flow scquence based on amival time'
GOTO 428
424 'WRITE(S,*)'Flow scquence based on commodity quantity'
GOTO 428
426 WRITE(S,*)Flow sequence based on O-D distance’
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GOTO 428
428 WRITE(S,*)
WRITE(S,*) Total number of cargo nodes:' ' NUMCAR
WRITES,*Y '
C sorting routine follows to sort cargo nodes bascd on cither
¢ amival time, quantity, or o-d distance
¢ actual nodes won't be sorted within the network,
¢ CARGPT array will be used to sequence
C sclection critena is uscr-specified by CARCRI
DO 429 I=1 NUMCAR
SORT()=0
CARGPT()=1
429 CONTINUE
IF (CARCRIL.EQ.0) GOTO 440
DO 430 =1 NUMCAR
BST=INF
WST=0.0
DO 432 J=1,NUMCAR
GO TO (440,434,436,438), CARCRI
434 IF ((NODES(J,2).LE.BST).AND.(SORT(J).EQ.0)) THEN
K=!1
BST=NODES(J,2)
ENDIF
GOTO 432
436 IF ((NODES(J,3).GE.WST).AND.(SORT(J).EQ.0)) THEN
K=]
WST=NODES(J,3)
ENDIF
GOTO 432
C 0-D distance sorter not currently coded
438 GOTO 432
432 CONTINUE
SORT(K)=1
CARGPT(I)=K
430 CONTINUE
¢ cnd of sorting, begin flowing commodities
440 DO 409 Q=1 NUMCAR
S=CARGPT(Q)
APOE=NODIKO(S,1)
APOD=NODIKO(S,2)
TARGET=NODES(S,3)
¢ following loop scans nctwork to find correct sink
=.1
DO 410 R=N-NUMSNK+1,N
IF (NODIKO(R,1).EQ.APOD) THEN
=R
ENDIF
410 CONTINUE
WRITEG,*)
WRITE(S,*) '
WRITE(S,*) Origin-Destination ICAOs: ', APOE,'-' APOD
WRITE(5,*) Arrival time:" NODES(S,2),’ Quantity:,TARGET
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WRITE(S,*)' Cargo node (source):',S,' Sink node:’,T
C #*#s¢ CARGFLO MAIN PROGRAM FOLLOWS
COMCOST=0.0
CURREN=0
STPATH=0
susss MAIN INITIALIZATION OVER *#***
470 CALL DIJKSTRA(S,T,STPATH,LOTRN)
WRITEG,*)
IF (STPATH.GT.0) THEN
¢ compress path prior to processing
CALL COMPRESS(S,T,STPATH,LOTRN)
C COMPRESS MAY CHANGE THE NUMBER OF TRANSSHIPMENTS
IF (LOTRN.GT.MAXTRN) GOTO 479
C STORE LOTRN INTO TRNDIS ARRAY
TRNDIS(LOTRN+1)=TRNDIS(LOTRN+1)+1
DELTA=INF
=T
475 IF1.EQ.S) GOTO 480

J=1

I=PRED(J)

C LOOP NEEDED HERE TO FIND CAPA(1,J)

CAPALJ=-1.0

FLOWLJ=-1.0

DO 477 K=POINT(1,1),POINT(1,2)

IF (INT(COSCAP(K,1)).EQ.J) THEN
CAPAIJ=COSCAP(K,6)
FLOWII=COSCAP(K.7)

GOTO 478
ENDIF
477 CONTINUE
WRITE(*,*)>>>> ERROR, CAPAII NOT FOUND.'
478 IF (CAPALL.GT.0.0) THEN
D=CAPAILJ-FLOWILJ
IF (D.LT.DELTA) DELTA=D
ENDIF
GOTO 475
480 IF ((CURREN+DELTA).GT.TARGET) THEN
DELTA=TARGET-CURREN
ENDIF
I=T
485 IF(1.LEQ.S) GOTO 490

J=1

I=PRED(J)

CAPAlJ=-1.0

FLOWIJ=-1.0

DO 486 K=POINT(,1),POINT(1,2)

IF (INT(COSCAP(K,1)).EQ.J) THEN
CAPAIJ=COSCAP(K,6)
FLOWIJ=COSCAP(K,7)

ARCTMP=K

GOTO 488

ENDIF
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486 CONTINUE
WRITE(*,*)>>>> ERROR, CAPAIJ NOT FOUND.
488 IF (CAPALL.GT.0.0) THEN
FLOWL=FLOWIJ+DELTA
COSCAP(ARCTMP,7)=FLOW1}
C FLOATING POINT ARITHMETIC TOLERANCE BUILT IN TO CATCH
C ANY SMALL DEVIATIONS HERE
IF(ABS(CAPAIJ-FLOWI)).LE.EPSILON) COSCAP(ARCTMP,S)=INF
ENDIF
GOTO 485
490 CURREN=CURREN+DELTA
**¢s* THIS SECTION WRITES OUT THE PATH A COMMODITY TAKES *****
CURNODE=-T
FLPATH(1)=T
FLNUM=1
DO 495 I=2N
FLPATH(1)=PRED(CURNODE)
IF(PRED(CURNODE).EQ.-1.0) GOTO 496
CURNODE=PRED(CURNODE)
FLNUM=FLNUM+1
495 CONTINUE
496  IF(FLNUM.NE.1) THEN
WRITE(S,*) TIS: ' DIST(T),’ FLOW: ', DELTA
WRITE(S,*)’ NO. OF TRANSSHIPMENTS: ',LOTRN
WRITE(S,*) ICAO MSNNO. TIME NODE NUMBER'
WRITEG,*) ==== == !
DO 500, I=FLNUM, 1,-1
J=FLPATH(])
WRITE(S,502)NODIKO(J,1),NODES(J,4),NODES(J,2),
502 FORMAT(2X,A4,3X,F5.0,5X,F5.2,5X,16)
500 CONTINUE
WRITE(S,*)
WRITE(4,*)DIST(T),LOTRN,DELTA FLNUM,(FLPATH(I),I=FLNUM,1,-1)
COMCOST=COMCOST+DIST(T)*DELTA
ENDIF
C STORE FLOW INTO TISDIS ARRAY
TISDIS(INT(DIST(T))+1)=TISDIS(INT(DIST(T))+1)*DELTA
ENDIF
L2 LR L S’I’PAm L2 2 2 2
IF ((CURREN.LT.TARGET).AND.(STPATH.GT.0)) GOTO 470
C FOLLOWING COMPUTES TOTAL SYSTEM COST (I.E. DAY-TONS!)
C COMCOST IS THE COST FOR THE GIVEN COMMODITY FLOW
479 TOTAL=TOTAL+COMCOST
TOTFLO=TOTFLO+CURREN
UNFLOW=UNFLOW+(TARGET-CURREN)
##¢¢¢ END COMMODITY FLOW ®¢*¢*
C ADD OUTPUT FOR TOTAL CHANNEL SYSTEM CARGO UNFLOWED
WRITE(S,*)
WRITE(S,*)' FLOWED CARGO FOR THIS COMMODITY:',CURREN
WRITE(S,*) UNFLOWED CARGO FOR THIS COMMODITY:',TARGET-CURREN
WRITE(S,*)' COST FOR FLOW OF THIS COMMODITY:',COMCOST
WRITE(,*)
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409

WRITE(S,*) TOTAL CHANNEL SYSTEM CARGO FLOWED:',TOTFLO
WRITE(S,*) TOTAL CHANNEL SYSTEM CARGO NOT FLOWED:',UNFLOW
WRITE(S,*)TOTAL CHANNEL SYSTEM COST:',TOTAL

CONTINUE

¢ 409 continuc loop for next commodity
C WRITE OUT TRANSSHIPMENT DISTRIBUTION

503

WRITE(S,*)
WRITE(S,*)
WRITE(S,*)
WRITE(S,*) TRANSSHIPMENT DISTRIBUTION'
WRITE(S,*)
WRITE(S,*) NUMBER OCCURENCES'
WRITE(S,*)’ seecemmemememnena-’
WRITE(7,*)
WRITE(7,*)
WRITE(7,*)
WRITE(7,*) TRANSSHIPMENT DISTRIBUTION'
WRITE(7,*)
WRITE(7,*) NUMBER OCCURENCES'
WRITE(7,*) +—-eeoeereee e
DO 503 I=1,60
IF (TRNDIS(1).GT.0) THEN
WRITE(S,*)(1-1),  ',TRNDIS()
WRITE(?,*)]-1), ", TRNDIS())
ENDIF
CONTINUE

C WRITE OUT T.1.S DISTRIBUTION

504

WRITE(,*)

WRITE(S,*)

WRITE(S,*)

WRITE(S,*)' T.I.S. DISTRIBUTION'
WRITE(S,*)

WRITE(S,*) DAYS TONS '
WRITE(S,*)’ ---omeeemmemneennes!

WRITE(7,*
WRITE(7,*)' T.LS. DISTRIBUTION'
WRITE(7,*)

WRITE(7,*) DAYS  TONS °
WRITE(7,*)' <-eremenemmenemenss’

DO 504 I=1,60

IF (TISDIS(1).GT.0) THEN
WRITE(S,*X(1-1),~,1, ", TISDIS(I)
WRITE(7,*)(I-1),'];  *TISDIS(l)
ENDIF

CONTINUE

CLOSE(4)

CLOSE(S)

CLOSE(11)

RETURN

END
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¢ DIJKSTRA'S SHORTEST PATH ALGORITHM FOR

¢ FLOW APPLICATIONS IN THE CHANNEL CARGO SYSTEM

c

¢ MODIFIED TO FIND ALTERNATE PATHS OF THE SAME LENGTH
C AND TO CHOOSE THE 'BEST' USING CRITERIA OF TRANSSHIPMENT,
C OR LEAST TIME IN-AIR, OR, ETC.

c

¢ Mecthod derived from "Discrete Optimization Algorithms with Pascal

¢ programs” (Syslo, Deo, Kowalik)

c

¢ N is the number of nodes.

¢ S is the source node

¢ T is the sink node

¢ INF is "infinity"

¢ PATH is 1-0 variable that determines if there is 8 path from the source to
¢ thesink "1" = truc and "0" = false

¢ DIST is the array containing the shortest distance from source to nodes
¢ that have been permanently labeled.

¢ PRED is the array a shortest path from source (node S) can be traced.

¢ FINAL is the armray for cach node determining if it has been labeled permanent
¢ where "1" = permanent and "0" = temporary.

c

C TIS IS TIME-IN-SYSTEM FOR A PATH

C TIA IS TIME-IN-AIR FOR A PATH

C LOWTIA IS LOWEST TIME-IN-AIR FOR PATHS

C DELTA IS MINIMUM ARC CAPACITY ALONG A PATH

C HIDELT IS HIGHEST OVERALL PATH CAPACITY

C MAXTRN IS MAXIMUM NUMBER OF TRANSSHIPMENTS ALLOWED
C NUMTRN IS CURRENT PATH NUMBER OF TRANSSHIPMENTS
C MAXALT IS MAXIMUM NUMBER OF ALT PATHS ALLOWED

C NUMALT IS CURRENT NUMBER OF ALT PATHS FOUND

C

C CURRENT LOGIC WILL:

C 1) NUMALT.LT.MAXALT, FIND AN ALTERNATE PATH.

C 2) DETERMINE ITS NUMBER OF TRANSSHIPMENTS (NUMTRN),
C DELTA, AND TIA AS WELL.

C 3) IFNUMTRN.GT.MAXTRN GOTO 1.

C 4) IF DELTA.LT.HIDELT GOTO 1

C 5) IF DELTA.EQ.HIDELT, RESORT TO TIME-IN-AIR AS

C CHOOSE CRITERIA. LOWEST TIA SELECTED,GOTO 1

C 6) IF DELTA.GT.HIDELT, STORE NEW PATH HIDELT, GOTO 1

SUBROUTINE DIJKSTRA(S,T,PATH,LOTRN)

INTEGER N,S,T,PATH,FINAL(4999),RECENT,Y
INTEGER NUMCAR ,NUMSNK ,NUMMSN,ITER
INTEGER POINT(4999,2)

INTEGER ARCNUM,NUMLBL,ENDNOD,NUMBAK
INTEGER FLPATH(4999),FLNUM,CURNODE
INTEGER LJL.M,I12

INTEGER BSTPTH(4999),BSTNUM
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INTEGER NUMTRN,LOTRN

INTEGER NUMALT,O,FIRST,PRIOR

INTEGER MAXIT,MAXALT,MAXTRN,CARCRI,PASSES,SORCRI
INTEGER TRNDIS(60),TRNS(500)

REAL DIST(4999),PRED(4999),INF,LABEL

REAL COSCAP(89999,8),NODES(4999,4), TNODES(4999,4)
REAL TIS,TIA

REAL DELTA HIDELT,BSTDLT

REAL COST

REAL EPSILON,TISDIS(60),TIMEPS

CHARACTER*4 NODIKO(4999,2)

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /PARAMS/ MAXIT, MAXALT,MAXTRN,CARCRI,PASSES,SORCRI, TIMEPS

C MAXALT AND MAXTRN AFFECT ALT PATHS AND ARE USER-SPECIFIED
LOTRN=99
NUMALT=0
NUMLBL=0
HIDELT=0.0
BSTDLT=0.0
DO 515 I=1,N
DIST(I)=INF
PRED(I)=-1.0
FINAL()=0
515 CONTINUE
DIST(S)=0.0
FINAL(S)=1
PATH=0
RECENT=S
¢ Dijkstra looks at forward star nodes
¢ from recent instcad of all nodes when
¢ using the linked adjacency list
588 DO 520 I=POINT(RECENT,1),POINT(RECENT,2)
IF (.LT.0) GOTO 525
IF (COSCAP(1,5).LT.INF) THEN
IF (FINAL(INT(COSCAP(],1))).EQ.0) THEN
LABEL=DIST(RECENT)+COSCAP(1,5)
IF(LABEL.LT.DISTANT(COSCAP(,1)))) THEN
DIST(INT(COSCAP(1,1)))-LABEL
PRED(INT(COSCAP(I,1)))=RECENT
ENDIF
ENDIF
ENDIF
520 CONTINUE
525 TEMP=INF
C CHANGED UPDATE SCAN TO EXCLUDE CARGO NODES, THEY CANNOT
C BE LABELED BECAUSE NO ARCS END AT THEM
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DO 530 U=NUMCAR+IN
IF (FINAL(U).EQ.0) THEN
IF (DIST(U).LT.TEMP) THEN
Y=U
TEMP=DIST(U)
ENDIF
ENDIF
530 CONTINUE
IF(TEMP.LT.INF) THEN
FINAL(Y)=1
RECENT=Y
NUMLBL=NUMLBL+1
ELSE
PATH=0
FINAL(T)=1
GOTO 599
ENDIF
IF(FINAL(T).LT.1) THEN
GOTO 588
ELSE
PATH=1
ENDIF
C ALTERNATE PATHS LOGIC FOLLOWS (NORMAL DIJKSTRA ENDS HERE)
C TAKE THE SELECTED PATH AND TRACE BACK IN
C THE PREDECESSOR ARRAY, ALL OF THESE NODES WILL BE USED AS
C END VERTICES FOR A SCAN OF ALL PERMANENTLY LABELLED NODES,
C IF AN ARC EXISTS BETWEEN A PERMANENTLY LABELLED NODE AND
C THE PREDECESSOR NODE, AN ALTERNATE PATH IS FOUND
C FILE "ait.out’' WILL CONTAIN INFO ON THE SEARCH IN FORMAT
C VERY SIMILAR TO 'paths.out":
¢ TIS/TIME-IN-AIR/FLOW CAPACITY/# TRANSSHIPMENTS/# NODES IN PATH/PATH
C VARIABLE 'MAXALT USER-SET TO LIMIT NUMBER OF ALTERNATE PATHS FOUND
C VARIABLE 'MAXTRN' USER-SET TO LIMIT NUMBER OF TRANSSHIPMENTS
C ALGORITHM WILL FIND/EVALUATE PATHS UNTIL MAXALT REACHED, THEN
C THE MOST ADVANTAGEOUS PATH WILL BE SELECTED BASED ON USER
C SELECTED CRITERIA.
NUMBAK=0
FIRST=1
I=T
555 IF ((I1.EQ.S).OR.(NUMALT.GE.MAXALT)) GOTO 599
J=1
I=PRED(J)
IF (FIRST.EQ.1) GOTO 570
575 NUMBAK=NUMBAK+1
DO 540 K=NUMCAR+1,N-NUMSNK
* ONLY CHECK PERMANENTLY LABELED NODES
IF (FINAL(K).LT.1) GOTO 540
* ANY NODE THAT FOLLOWS K IN THE INITIAL PATH
* (CLOSER TO THE SINK) CANNOT BE USED,OR A
* CYCLE WOULD BE INTRODUCED INTO THE PRED ARRAY.
* (THIS WILL ONLY HAPPEN WITH 0 COST ARCS)
12=T
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DO 560 M=1 NUMBAK+1
12=PRED(12)
IF (K. EQ.I2) GOTO 540
560 CONTINUE
* CHECK TO SEE IF ANY ARCS ORIGINATE ATNODEK
IF (POINT(K,1).LT.0) GOTO 540
DO 545 L=POINT(X,1),POINT(K,2)
ENDNOD=INT(COSCAP(L,1))
¢ nced to check if this arc has infinite cost
IF (ENDNOD.EQ.I).AND.(COSCAP(L,5).LT.INF)) THEN
C AN ALTERNATE PATH HAS BEEN FOUND:
NUMALT=NUMALT+1
570 NUMTRN=0
PRIOR=0
DELTA=INF
TIS=DIST(T)
TIA=0.0
C WRITE(*,*) ALT PATH FOUND!'
C ALTERNATE PATHS WILL BE A 'SPLICE' OF WHAT WE HAVE JUST FOUND
C AND THE SELECTED PATH, BASED ON HOW FAR WE HAVE TRACED BACK
FLPATH(1)=T
CURNODE=T
FLNUM=1
C THE 557 LOOP TRACES BACK ALONG THE SELECTED PATH
DO 557 M=2N
IF (M.EQ.(NUMBAK+2)).AND.(FIRST.NE.1)) THEN
FLPATH(M)=K
ELSE
FLPATH(M)=PRED(CURNODE)
ENDIF
C FOLLOWING IF-THEN DETERMINES LAST NODE IN PATH
C THE PRIOR.EQ.0 IF-THEN WAS ADDED IN AN ATTEMPT TO
C TRACK TRANSSHIPMENTS PROPERLY. W/0O, THE LOOP COUNTS
C AN ADDITIONAL FAKE TRANSSHIPMENT FROM SOURCE TO ORIGIN
C AIRBASE IF THE PATH GOES THROUGH THE TRANSSHIPMENT PATH
IF(PRED(CURNODE).EQ.-1.0) THEN
IF (PRIOR.EQ.0) THEN
NUMTRN=NUMTRN-1
ENDIF
GOTO 565
ENDIF
C THE 558 LOOP ACCESSES ARC INFORMATION FROM COSCAP
COST=-1.0
CAPAlJ=-1.0
FLOWLJ=-1.0
DO 558 O=POINT(FLPATH(M),1),POINT(FLPATH(M),2)
IF (INT(COSCAP(0,1)).EQ.CURNODE) THEN
COST=COSCAP(0,5)
CAPALI=COSCAP(0,6)
FLOW1J=COSCAP(0,7)
GOTO 559
ENDIF
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558 CONTINUE
WRITE(*,*)>>>> ERROR, CAPALJ NOT FOUND (DUKSTRA).
C CAPALI IS COMPARED TO PREVIOUS DELTA, MIN STORED
559  IF (CAPAIJL.GT.0.0) THEN
D=CAPALL.FLOWIJ
IF (D.LT.DELTA) DELTA=D
ENDIF
C CURRENT ARC IS CHECKED TO SEE IF IT TRANSSHIPS
C LOGIC MODIFIED TO NOT COUNT CONSECUTIVE TRANSSHIPMENTS
C MORE THAN ONCE, PREVIOUS METHOD COUNTED
C EACH CONSECUTIVE ARC IN THE TRANSSHIPMENT PATH
C
C THE VARIABLE 'PRIOR' WILL BE THE SWITCH TO PREVENT
C NUMTRN FROM BEING INCREMENTED
C
C PRIOR='0' PREVIOUS ARC TRANSSHIPS
C PRIOR="I' PREVIOUS ARC DOESN'T TRANSSHIP
IF (NODES(FLPATH(M),1).GT.0.0) THEN
IF (NODES(FLPATH(M),1).EQ.3.0).AND.
C (NODES(CURNODE, 1).NE.0.0)) THEN
NUMTRN=NUMTRN+PRIOR
PRIOR=0
GOTO 561
ELSE
IF ((CURNODE.NE.(FLPATH(M)+1)).AND.
C (NODES(CURNODE, 1).NE.0.0)) THEN
NUMTRN=NUMTRN+PRIOR
PRIOR=0
GOTO 561
ENDIF
ENDIF
C TIME-IN-AIR IS CALCULATED
IF ((CURNODE.EQ.(FLPATH(M)+1)).AND.
C (NODES(CURNODE, 1).NE.0.0)) THEN
IF (NODIKO(CURNODE, 1).NE.NODIKO(FLPATH(M),1)) THEN
TIA=TIA+COST
PRIOR=1
ENDIF
ENDIF
ENDIF
561 IF (M.EQ.(NUMBAK+2)).AND.(FIRST.NE.1)) THEN
CURNODE=K
EISE
CURNODE=PRED(CURNODE)
ENDIF
FLNUM=FLNUM+1
557 CONTINUE
565 IF(FLNUM.NE.1) THEN
WRITE(11,*)TIS,TIA,DELTA NUMTRN,FLNUM,(FLPATH(M),M=FLNUM, 1 ,-1)
ENDIF
C BEST PATH LOGIC FOLLOWS
C STORE CURRENT BEST INTO BUFFER ARRAY BSTPTH(),BSTNUM,BSTDLT
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IF (DELTA.EQ.0.0) GOTO 547
IF (NUMTRN.LT.LOTRN) GOTO 578
IF (NUMTRN.EQ.LOTRN).AND.(DELTA.GT.HIDELT)) GOTO 578
GOTO 547
§78 LOTRN=NUMTRN
HIDELT=DELTA
BSTDLT=DELTA
BSTNUM=FLNUM
DO 580 M=BSTNUM, 1,-1
BSTPTH(M)=FLPATH(M)
580 CONTINUE
c BSTPTH(1)=T
ENDIF
547 IF (FIRST.EQ.1) THEN
FIRST=0
GOTO 575
ENDIF
545 CONTINUE
540 CONTINUE
C JUMP UP TO FIND ANOTHER ALTERNATE PATH
GOTO 555
C THE BEST PATH INFO NEEDS TO BE LOADED INTO PRED,DELTA:
599 [F NUMALT.GT.0) THEN
DO 585 M=1,BSTNUM-1
PRED(BSTPTH(M))=BSTPTH(M+1)
585 CONTINUE
PRED(S)=-1.0
ENDIF
write(11,*)
write(11,*)
C IF THE BEST PATH VIOLATES THE SPECIFIED MAXTRN, SET PATH=0
IF (LOTRN.GT.MAXTRN) PATH=0
RETURN
END

SUBROUTINE COMPRESS

MODIFIED TO BYPASS THE OUT-AND-BACK PHENOMENON, AS WELL

AS RECOUNT NUMBER OF TRANSSHIPMENTS IN THE COMPRESSED PATH
SUBROUTINE COMPRESS TAKES A PATH DETERMINED FROM

DIJKSTRA AND SHORTENS IT TO A MINIMUM NUMBER OF NODES.

IT DELETES ANY UNNECESSARY NODES SUCH AS INTERMEDIATE
TRANSSHIPMENT NODES. THE SUBROUTINE SHOULD BE CALLED

FOR ALL PATHS THAT ENTER THE FLOW PATTERN.

THE SUBROUTINE ADDS ARCS TO COSCAP AND ADJUSTS THE POINT
ARRAY IF COMPRESSION REQUIRES NONEXISTING ARCS.

® & % N % & # 8 & &

SUBROUTINE COMPRESS(S,T.,PATH,LOTRN)

INTEGER NS, T,PATH

INTEGER NUMCAR NUMSNK,NUMMSN,ITER
INTEGER POINT(4999.2)

INTEGER ARCNUM,LOTRN,K
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INTEGER TRNDIS(60), TRNS(500)

INTEGER TRNNUM,HEAD,TAIL

INTEGER HLADDARC,RETRN,NUMTRN

REAL DIST(4999),PRED(4999),INF

REAL COSCAP(89999,8),NODES(4999,4), TNODES(4999,4)
REAL EPSILON,TISDIS(60)

CHARACTER*4 NODIK0O(4999,2)
CHARACTER*4 CURIKO,PRIIKO

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

* CHECK CONDITIONS TO JUSTIFY RUNNING COMPRESS
IF (PATH.EQ.0) THEN
WRITE(*,*) ERROR, COMPRESS CALLED, STPATH=0'
GOTO 3120
ENDIF
* ADDITIONAL LOOP ADDED TO CATCH OUT-AND-BACKS
* RETRN IS A SWITCH TO INDICATE IF ANY ARCS HAVE BEEN ADDED
* IF THEY HAVE, RETRN SET TO 1, AND THE NUMBER OF TRANSSHIPMENTS
* MUST BE RETALLIED.
RETRN=0
H=T
3070 H=PRED(H)
IF ((PRED(H).EQ.S).OR.(H.EQ.S)) GOTO 3080
I=H
HEAD-=I
PRIIKO=NODIKO(, 1)
TRNNUM=0
ADDARC=0
3000 IF(L.EQ.S) GOTO 3010
IF(LEQ.-1) THEN
WRITE(*,*)ERROR: I =-1! (COMPRESS)
WRITE(*,*)PRED ARRAY INCORRECT
ENDIF
J=1
=PRED(J)
CURIKO=NODIKO(,1)
TRNNUM=TRNNUM+1
IF ((CURIKO.EQ.PRIIKO).AND.(TRNNUM.GE.2)) THEN
ADDARC=1
RETRN=1
TAIL=I
PRED(HEAD)=TAIL
ENDIF
* ERROR CHECKER:
IF (TRNNUM.GT.N) THEN
WRITE(*,*) INFINITE LOOP IN COMPRESS, ABORT'
WRITE(*,*) =S, T=\T
WRITE(%,*) I=',1,' =]

84



STOP
ENDIF
GOTO 3000
* IF ADDARC=1, AN ARC HAS BEEN INTRODUCED,
* NEED TO SCAN TO SEE IF IT EXISTS IN COSCAP,
* IFIT DOESN'T, INSERT AND UPDATE COSCAP,POINT
3010 IF (ADDARC.EQ.1) THEN
* SEARCH FOR THE ARC IN COSCAP
DO 3020 K=POINT(TAIL,1),POINT(TAIL,2)
IF (INT(COSCAP(K, 1)).EQ.HEAD) GOTO 3070
3020 CONTINUE
* SHIFT ALL FOLLOWING ARCS ONE DOWN IN COSCAP
ARCNUM=ARCNUM+1
DO 3040 K=ARCNUM,POINT(TAIL,2)+2,-1
COSCAP(K,1)=COSCAP(K-1,1)
COSCAP(K,2)=COSCAP(K-1,2)
COSCAP(K,3)=COSCAP(K-1,3)
COSCAP(K,4)=COSCAP(K-1,4)
COSCAP(K,5)=COSCAP(K-1,5)
COSCAP(K,6)=COSCAP(K-1,6)
COSCAP(K,7)=COSCAP(K-1,7)
COSCAP(K,8)=COSCAP(K-1,8)
3040 CONTINUE
* INSTALL NEW ARC INTO COSCAP
K=POINT(TAIL.2)+1
COSCAP(K,1)=HEAD
COSCAP(K,2)=NODES(HEAD,2)-NODES(TAIL2)
COSCAP(K,3)=INF
COSCAP(K,4)=0.0
COSCAP(K,5)=COSCAP(K,2)
COSCAP(K,6)=COSCAP(K,3)
COSCAP(K,7)=COSCAP(K 4)
COSCAP(K,8)=NODES(HEAD 4)
* UPDATE ENDPOINTER FOR NODE TAIL
POINT(TAIL,2)=K
* SHIFT ALL SUBSEQUENT NODE POINTERS BY 1 (EXCEPT -1'S)
DO 3060 K=TAIL+1,N
IF (POINT(X,1).GT.0) THEN
POINT(K,1)=POINT(K,1)+1
POINT(K,2)=POINT(K,2)*+1
ENDIF
3060 CONTINUE
ENDIF
* ENDIF FOR (ADDARC.EQ.1) ™A
* LOOP BACK TO CONTINUE CHECKING FOR OUT-AND-BACKS
GOTO 3070

* ADD CODE TO COUNT TRANSSHIPMENTS OF COMPRESSED PATH

3080 IF (RETRN.EQ.0) GOTO 3120
NUMTRN=0
I=PRED(T)

3090 IF(PRED(1).EQ.S) GOTO 3100
J=1
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=PRED(J)
* MSN NUMBER DIFFERENCE CONSIDERED A TRANSSHIPMENT
IF (ILNE.(-1)) THEN

SUBROUTINE POSTPROC PERFORMS POST-PROCESSING ON THE OUTPUT FROM
SUBROUTINE CARGFLO

IT DETERMINES THE UTILIZATION OF THE LEGS ALONG EACH MISSION,
REPORTING THIS UTILIZATION AS A PERCENTAGE OF TOTAL CAPACITY USED.

® & & =

SUBROUTINE POSTPROC ()

INTEGER N,PATHNUM,PATH(500,75), NUMCAR

INTEGER NUMSNK,MSNNOD,NUMNODE(4999),BEGMSN(1000),ENDMSN(1000)
INTEGER FLONUM(4999),NUM(4999) NUMMSN

INTEGER ITER,TEMP,POINT(4999,2),ARCNUM

INTEGER MSNORD(1000), TMPORD,ORDER

INTEGER TRNDIS(60),TRNS(500),SORCRI,TMPORD,UPPER

REAL COSCAP(89999,8),INF,PRED(4999),DIST(4999),UTIL
REAL NODES(4999,4), TNODES(4999,4),ACCAP(1000),RATIO
REAL PTHFLO(500),MAXUTE(1000), MAXUTL

REAL EPSILON,TISDIS(60) ‘

REAL MSNCAP,TIMEPS, TMPUTE

CHARACTER PPNAM®*9,NS*3 EXT*2,POS(3)* 1, NODIKO(4999,2)*4
CHARACTER AC(1000)*4,MSNCOD(1000)*1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /PARAMS/ MAXIT,MAXALT,MAXTRN,CARCRI,PASSES,SORCRI, TIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,

C FLONUM, PATHNUM, PTHFLO, MSNCOD

COMMON /ORD/ MSNORD

OPEN(UNIT=2,FILE="newsched.dat' STATUS="OLD',FORM=FORMATTED")
* THE FOLLOWING SECTION DETERMINES THE NODE NUMBERS ASSOCIATED WITH A
* PARTICULAR MISSION. BEGMSN(I) IS THE FIRST NODE ON MISSION I AND
ENDMSN() IS THE FINAL NODE.
MSNNOD=NUMCAR+1
READ(2,*)NUMMSN
DO 1000 I=1,NUMMSN
READ(2,*)NUMNODE(),AC(I),ACCAP(I),MSNCOD(l)
BEGMSN(I)=MSNNOD :
ENDMSN(I)=BEGMSN(I)*NUMNODE(I)-1
NUM(I)=NUMNODE()
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DO 1010 J=1 NUMNODEQ)
READ(2,*)
1010 CONTINUE
MSNNOD=MSNNOD+NUMNODE(])
1000 CONTINUE
* THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION'S
*  POST-PROCESSING.
TEMP=ITER
EXT='¢'
DO 1020 I=2,0,-1
RATIO=INT(TEMP/(10**1))
TEMP=TEMP-RATIO*(10**])
POS(I+1)=CHAR(48+RATIO)
1020 CONTINUE
NS=POS(3)//POS(2)}//POS(1)
PPNAM="post'//NS//EXT
OPEN(UNIT=3,FILE=PPNAM,STATUS="UNKNOWN',FORM=FORMATTED")
BEGIN POST-PROCESSING
WRITE HEADER
WRITE(3,*)'UTILIZATION OF MISSIONS'
WRITEG,*)
WRITE(3,*)'UTILIZATION EQUALS THE PERCENTAGE OF A MISSION LEG'
WRITE(3,*))CAPACITY THAT IS USED.
WRITE(3,*)
WRITE(3,*)ICAO UTIL. FLO
WRITEG,*)' !
WRITEG,*)
DO 1030 I=1, NUMMSN
MAXUTE(1)=0.0
MSNCAP=0.0
WRITE(3,1040), AC(),ACCAP(I)
1040 FORMAT(MISSION '3, (ACFT =",A4,', CAPACITY =",
c F4.1, TONS)")
WRITE(3,1050)NODIKO(BEGMSN(I),1)
1050 FORMAT(A4,2X,'-== ----")
DO 1060 J=-BEGMSN(1)+1,ENDMSN()
IF(POINT(J-1,1).EQ.-1) THEN
WRITE(*,*)BEFORE 1070, -1
ENDIF
DO 1070 K=POINT(J-1,1),POINT(J-1,2)
IF(INT(COSCAP(K,1)).EQ.J) THEN
IF(NODIKO(J-1,1).NE.NODIKO(J,1)) THEN
UTIL=COSCAP(K,7¥COSCAP(K,3)
MAXUTE(I)=MAXUTE(I)*+COSCAP(K,2)*COSCAP(K,7)
MSNCAP=MSNCAP+(COSCAP(K,2)*COSCAP(K,3))
WRITE(3,1080)NODIKO(J,1),UTIL,COSCAP(K,7)
1080 FORMAT(A4,2X F4.2,2X F6.2)
ELSE
GOTO 1070
ENDIF
ENDIF
1070 CONTINUE
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1060 CONTINUE
MAXUTE(I)=MAXUTE(QYMSNCAP
WRITEG,*)’OVERALL UTILIZATION ON THIS MISSION: ' MAXUTE(l)
IF(MAXUTE(I).GT.1.0) THEN
WRITE(*,*YWARNING: MISSION '1,' IS OVERUTILIZED!'
ENDIF
WRITEG,*)
1030 CONTINUE
*  THIS SECTION ORDERS THE MISSION SET ACCORDING TO USER PREFERENCE
DO 1090 I=1,NUMMSN
MSNORD(l)=I
1090 CONTINUE
IF(SORCRLEQ.1) GOTO 1105
IF(SORCRLEQ.2) THEN
*  THIS SECTION SORTS IN REVERSE GIVEN ORDER
DO 1095 I=1,NUMMSN
MSNORD(I)=NUMMSN+1-I
1095 CONTINUE
GOTO 1105
ENDIF
IF(SORCRIGT.2) THEN
*  THIS SECTION SORTS ON ASCENDING UTILIZATION
DO 1100 I=1,NUMMSN-1
MAXUTL-MAXUTE(I)
ORDER=I
DO 1110 J=I+1NUMMSN
IF(MAXUTE(J).GT.MAXUTL) THEN
MAXUTL=MAXUTE(J)
ORDER=J
ENDIF
1110  CONTINUE
*  SWITCH POSITION I AND POSITION ORDER IN MSNORD ARRAY
TMPUTE=MAXUTE()
MAXUTEQ)=MAXUTE(ORDER)
MAXUTE(ORDER)=TMPUTE
TMPORD=MSNORD(I)
MSNORD(1)=MSNORD(ORDER)
MSNORD(ORDER)=TMPORD
1100 CONTINUE
ENDIF
IF(SORCRLEQ.4) THEN
THIS SECTION SORTS ON DESCENDING UTILIZATION (REVERSES THE ORDER
DETERMINED BY THE ABOVE 1100 LOOP
SINCE WE ARE DOING A PAIRWISE SWITCH, WE NEED ONLY GO THROUGH THE
FIRST HALF OF THE MISSIONS. WE MUST DETERMINE IF THE NUMBER OF
MISSIONS IS ODD OR EVEN.
IF((NUMMSN/2.).GT.ANT(NUMMSN/2.))) THEN
*  ODD NUMBER
UPPER=INT(NUMMSN/2.)+1
ELSE
UPPER=INT(NUMMSN/2.)
ENDIF

® % & % @
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DO 1096 1=1,UPPER
TMPORD=MSNORD(I)
MSNORD(1)=MSNORD(NUMMSN-I+1)
MSNORD(NUMMSN-1+1)=TMPORD

1096 CONTINUE

*

ENDIF
THE MISSION SET IS NOW SORTED ACCORDING TO USER PREFERENCE

1105 CLOSE(2)

CLOSE(3)
RETURN
END

THIS SUBROUTINE DOES SOME PRE-PROCESSING OF THE DATA FOR LATER USE
IN SUBROUTINE MODMSN.

SUBROUTINE PREMOD(

INTEGER NUMCAR NUMMSN,NUMNODE(4999),BEGMSN(1000)
INTEGER ENDMSN(1000),NUM(4999),ARCNUM,POINT(4999,2)
INTEGER PATHNUM,PATH(500,75),FLONUM(4999)

INTEGER TRNDIS(60), TRNS(500)

REAL COSCAP(89999,8),ACCAF(1000),NODES(4999,4),PRED(4999)
REAL DIST(4999),TISYS,TNODES(4999,4),PTHFLO(500)
REAL EPSILON,TISDIS(60)

CHARACTER*4 AC(1000),NODIK0(4999,2), MSNCOD(1000)* 1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,
C FLONUM, PATHNUM, PTHFLO, MSNCOD

OPEN(UNIT=4,FILE="paths.out' ,STATUS="'OLD' FORM=FORMATTED")

THIS SECTION READS IN AND STORES THE PATHS GENERATED BY SUBROUTINE
CARGFLO. IT ALSO STORES THE TIME IN SYSTEM AND FLOW FOR EACH PATH.
PATHNUM=0
DO 1120 1=1,99999999
READ(4,* END=1130)TISYS,TRNS(I),PTHFLO(I),FLONUM(),
C (PATH(1,J),J=1,FLONUM())
PATHNUM=PATHNUM+1

1120 CONTINUE
1130 CONTINUE

THE FOLLOWING LOOP SETS COSCAP(1,8) TO ZERO FOR ALL ARCS.
DO 1140 I=1,ARCNUM
COSCAP(1,8)=0.

1140 CONTINUE

*
*
*

THIS SECTION MARKS COLUMN 8 OF COSCAP (I.E. THE MISSION THAT THE
ARC CONNECTS TO) FOR EVERY ARC IN THE FLOW. THAT IS, ONLY THOSE
ARCS THAT ARE ACTUALLY USED (NON-ZERO FLOW) WILL BE MARKED.
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DO 1170 I=1,PATHNUM

DO 1180 J=1,FLONUM()-2
DO 1190 K=POINT(PATH(,J),1),POINT(PATH(1,J),2)
IF(INT(COSCAP(K, 1)).EQ.PATH(,J+1)) THEN
COSCAP(K 8)=NODES(PATH(,J+1),4)
ENDIF

1190  CONTINUE
1180 CONTINUE
1170 CONTINUE

»
*

THE FOLLOWING SECTION STORES THE VALUES OF THE NODES MATRIX IN THE
TEMPORARY MATRIX TNODES.

DO 1210 =1 N

DO 1220 J=1,4
TNODES(1,J>NODES(1,J)

1220 CONTINUE
1210 CONTINUE

*
*

THE FOLLOWING SECTION STORES THE COSTS ASSOCIATED WITH EACH ARC IN
THE TEMPORARY COLUMN OF THE COSCAP MATRIX.

DO 1230 I=1,ARCNUM

COSCAP(1,5)=COSCAP(1,2)

1230 CONTINUE
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CLOSE(4)
RETURN
END

SUBROUTINE MODMSN COMBINED WITH SUBROUTINE STEP3, IMPLEMENTS THE
SCHEDULING IMPROVEMENT ALGORITHM, WHICH IS DESIGNED TO SHIFT THE
START TIMES OF THE MISSIONS TO AN EARLIER TIME (SHIFTING TO A LATER
TIME WILL HAVE TO BE A TOPIC OF FUTURE RESEARCH) IN AN ATTEMPT TO
DELIVER CARGO SOONER TO THE CUSTOMER AND THUS REDUCING THE OVERALL
COST.
THERE ARE FOUR MAIN STEPS IN THE ALGORITHM:

STEP 1: DETERMINATION OF THE TIME SHIFT

STEP 2: IMPLEMENTATION OF THE TIME SHIFT

STEP 3: MEASURING THE IMPACT OF THE TIME SHIFT

STEP 4: REVERSAL OF THE TIME SHIFT
SUBROUTINE MODMSN PERFORMS STEPS 1, 2, AND 4, WHILE THE APTLY NAMED
SUBROUTINE STEP3 PERFORMS STEP 3.
PREVIOUS WORK, SPECIFICALLY THE RAU THESIS PROJECT, SHIFTED THE
MISSION START TIMES ONLY TO THE POINT OF MAINTAINING THE CURRENT
FLOW. THIS ALGORITHM IMPROVES UPON THIS BY ALLOWING CARGO TO BE
REFLOWED (FLOWED ALONG DIFFERENT PATHS) IF IT GENERATES A BETTER
FLOW PATTERN. A BETTER FLOW PATTERN IS DEFINED AS ONE WHICH DELIVERS
AT LEAST AS MUCH CARGO AS BEFORE WITH A SMALLER OVERALL COST. IF
ANY PREVIOUSLY DELIVERED CARGO CANNOT BE DELIVERED BECAUSE OF A CHANGE
IN THE SCHEDULE, THE CHANGE IS NOT IMPLEMENTED.
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SUBROUTINE MODMSN(MODTOT,MODFLO,TOTAL,TERCRI)

INTEGER N,X,PATHNUM,PATH(500,75), NUMCAR
INTEGER NUMSNK,NUMNODE(4999),BEGMSN(1000),ENDMSN(1000)
INTEGER FLONUM(4999),CHANGE ,NUM(4999), NUMMSN
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INTEGER ITER,TEMP,POINT(4999,2), ARCNUM

INTEGER NUMPATH,FEAS

INTEGER ARCCNT,CALLS, TFLONM(500),TPATH(500,75)

INTEGER MSNORD(1000)

INTEGER MAXIT,MAXALT,MAXTRN,CARCRI,PASSES,MSNPAS,SORCRI
INTEGER TRNDIS(60), TRNS(500),TTRNS(500)

INTEGER BEGARC(500),ENDARC(500),TRNCNT

INTEGER FLNUM,INP ATH(75),TRANS,TERCRI

REAL COSCAP(89999,8),INF,TCOST,PRED(4999),DIST(4999)

REAL NODES(4999,4), TNODES(4999,4),ACCAP(1000),SHIFT,RATIO
REAL COST(2),PTHFLO(500), TOTAL,TISDIS(60)

REAL MODTOT,MODFLO,TISYS,FLO,REFLOW,TIMEPS, EPSILON

CHARACTER FILNAM®*10,NS*3,EXT*2,POS(3)* 1,NODIKO(4999,2)* 4
CHARACTER AC(1000)*4,PTHNAM®*10,MSNCOD(1000)*1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /PARAMS/ MAXIT,MAXALT,MAXTRN,CARCRI,PASSES,SORCRI, TIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,

C FLONUM, PATHNUM, PTHFLO, MSNCOD

COMMON /CHNG/ NUMPATH, BEGARC, ENDARC

COMMON /ORD/ MSNORD

- N IS THE NUMBER OF NODES IN THE NETWORK

- PATHNUM IS A COUNTER FOR THE NUMBER OF PATHS USED IN THE FLOW.

- PATH(,J) IS A MATRIX OF NODE IDENTIFIERS. FOR EXAMPLE, PATH(1,3)
IS THE THIRD NODE ON THE FIRST PATH.

- NODENUM(I) IS THE NUMBER OF NODE L.

- NUMCAR IS THE NUMBER OF CARGO GENERATION NODES.

- NUMSNK IS THE NUMBER OF SINK NODES.

- MSNNOD IS USED TO STORE THE NUMBER OF THE BEGINNING NODE FOR A
PARTICULAR MISSION.

- NUMNODE(I) IS THE NUMBER OF NODES ASSOCIATED WITH MISSION 1.

- BEGMSN(I) AND ENDMSN(I) ARE ARRAYS WHICH HOLD THE NUMBERS OF THE
BEGINNING AND END NODES FOR MISSION L.

- NUMMSN IS THE NUMBER OF MISSIONS ON THE NETWORK.

- NUM(I) IS AN ARRAY WHICH HOLDS THE VALUE OF NUMNODE FOR A MISSION L.

- FLONUM(I) IS AN ARRAY HOLDING THE NUMBER OF NODES USED ON PATH L.

- CHANGE IS A COUNTER FOR THE NUMBER OF SCHEDULE CHANGES MADE DURING A
SINGLE PASS THROUGH THE NETWORK.

- NODES(,3) IS A MATRIX CONTAINING BASE ID, TIME, AND CARGO FOR NODE L

- TNODES(1,3) IS A TEMPORARY MATRIX CONTAINING THE SAME INFORMATION HELD
IN NODES(L3).

- SHIFT IS THE CHANGE IN THE SCHEDULE.

- INF IS INFINITIY.

- COSCAP(1,7) IS A MATRIX CONTAINING THE END NODE, COST, AND CAPACITY
FOR ARC.

- POINT(,2) IS A MATRIX HOLDING THE ARC NUMBERS EMANATING FROM NODEI.

- TCOST IS A TEMPORARY VARIABLE CONTAINING THE PROPOSED TIME SHIFT.
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THE OUTPUT FILE 'modmsn.c’ HOLDS A LOG OF THE ACTIONS TAKEN BY THE
PROGRAM. ITIS USED PRIMARILY FOR DIAGNOSTIC PURPOSES AND MAY BE
'TURNED OFF WITHOUT AFFECTING THE PROGRAMMING. JUST REMEMBER TO
COMMENT OUT ALL THE APPROPRIATE WRITE STATEMENTS.
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* BEGIN THE SCHEDULING IMPROVEMENT ALGORITHM .
SESEELEEEEEESINEEERLERIHESSEEESEEEEESEUSSISSEEIRENISESREUNEESIRIEEEENESS
* STEP 0-- INITIALIZATION

MSNPAS=0

TERCRI=0
1240 CHANGE=0

CALLS=0

MSNPAS=MSNPAS+1
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* STEP 1: DETERMINATION OF THE TIME SHIFT .
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GENERAL DESCRIPTION OF STEP 1:
FOR MISSION M FIND ALL THE TRANSSHIPMENT ARCS THAT TERMINATE ON THE
MISSION. DETERMINE WHICH ARC WILL BE THE FIRST TO BECOME INFEASIBLE
WITH A TIME SHIFT. WE CALL THIS ARC THE MOST CRITICAL ARC AND STORE
ITS COST AS COST(1). ALSO FIND THE NEXT ARC WHICH WILL BECOME
INFEASIBLE AND CALL IT THE NEXT MOST CRITICAL ARC, STORING ITS COST
AS COST(2).
SINCE WE CANNOT SHIFT A MISSION BY SUCH AN AMOUNT THAT WILL CAUSE ITS
START TIME TO BE A NEGATIVE NUMBER, WE DEFINE THE TIME SHIFT TO BE
THE MINIMUM OF { THE MISSION START TIME, COST(2)}. THIS TIME SHIFT
REPRESENTS THE MAXIMUM AMOUNT OF TIME WE CAN SHIFT THE MISSION START
WHILE ONLY CAUSING THE MOST CRITICAL ARC TO BECOME INFEASIBLE.
DO 1250 A=1, NUMMSN
K=MSNORD(A)
* IF THE MISSION CODE FOR THIS MISSION IS 'F, THIS MISSION IS A FREQUENCY
* REQUIREMENT MISSION. THIS ALGORITHM DOES NOT ALTER FREQUENCY
MISSIONS, SO WE MOVE ON TO THE NEXT MISSION.
IF(MSNCOD(K).EQ.'F") GOTO 1250
FEAS=0
SHIFT=INF
COST(1)=INF
ARCCNT=0
*  FIND ALL TRANSSHIPMENT ARCS THAT TERMINATE ON THE MISSION
DO 1260 L=1, ARCNUM
IF(INT(COSCAP(L,8)).EQ K) THEN
*IF(1)
DO 1270 M=1,N
IF(L.GE.POINT(M,1).AND.L.LE.POINT(M,2)) THEN
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*IFQ2)
* DISREGARD SEQUENTIAL ARCS IF ON THE SAME MISSION
IF(NODES(M,4).EQ.K) GOTO 1260
ARCCNT=ARCCNT+1 )
TCOST=COSCAP(L,5)
IF THE TCOST IS LESS THAN THE CURRENT VALUE OF SHIFT, MAKE TCOST THE
* NEW VALUE OF SHIFT AND ADJUST THE TWO COSTS.
IF(TCOST.LT.SHIFT) THEN
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*IF3)
SHIFT=TCOST
COST(2)=COST(1)
COST(1)=SHIFT
ELSE
*ELSE(3)
IF(TCOST.GT.SHIFT) THEN
* IF TCOST IS GREATER THAN THE CURRENT VALUE OF SHIFT BUT LESS THAN
* THE VALUE OF COST(2), SET COST(2) EQUAL TO TCOST.
IF(TCOST.LT.COST(2)) COST(2)~TCOST
ENDIF
ENDIF
*ENDIF(3)
ENDIF
*ENDIF(2)
1270 CONTINUE
ENDIF
*ENDIF(1)
1260 CONTINUE
* IF NO TRANSSHIPMENT ARCS TERMINATED ON THE MISSION, A SHIFT OF THE
¢  MISSION WILL NOT CAUSE ANY INFEASIBILITIES. DISREGARD THIS MISSION
*  AND PROCEED TO THE NEXT.
IF(ARCCNT.EQ.0) GOTO 1250
THE MISSION CAN ONLY BE SHIFTED BY THE MINIMUM OF THE MISSION
STARTING TIME AND THE SHIFT DETERMINED ABOVE.
SHIFT=COST(2)
THERE MAY BE MORE THAN 1 MOST CRITICAL ARC. THAT IS, THERE MAY
BE MULTIPLE ARCS WITH SAME COST THAT WILL BECOME INFEASIBLE WITH A
TIME SHIFT. THIS SECTION FINDS ALL OF THEM, DISREGARDING THOSE
THAT FALL ON THE SAME MISSION. AN ARC CONNECTING TWO NODES ON THE
SAME MISSION WILL NEVER BECOME INFEASIBLE WITH A TIME SHIFT.
TRNCNT=0
DO 1265 L=1,ARCNUM
IFANT(COSCAP(L,8)).NE.K) GOTO 1265
IF(COSCAP(L,5).EQ.COST(1)) THEN
*  FIND THE BEGINNING NODE ASSOCIATED WITH THIS ARC.
DO 1275 M=1,N-NUMSNK
IF(L.GE.POINT(M,1).AND.L.LE.POINT(M,2)) THEN
* NODE M IS THE BEGINNING NODE OF THE ARC
IFANT(NODES(M,4)).EQ.K) GOTO 1265
TRNCNT=TRNCNT+1
BEGARC(TRNCNT)=M
ENDARC(TRNCNT)=INT(COSCAP(L,1))
GOTO 1265
ENDIF
1275  CONTINUE
ENDIF
1265 CONTINUE
* IFONLY 1 TRANSSHIPMENT ARC TERMINATED ON THE MISSION, THE VALUE
*  OF SHIFT WILL BE INFINITY. SINCE WE OBVIOUSLY CANNOT SHIFT BY
* THIS AMOUNT, WE MUST ARBITRARILY DEFINE A VALUE FOR IT. WENEED A
* VALUE GREATER THAN COST(1), BUT NOT TOO MUCH GREATER, SINCE WE HOPE

* »
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TO PERTURB THE SYSTEM BY AS LITTLE AS POSSIBLE. ARBITRARILY SET
*  SHIFT TO COST(1)+.1.
IF(SHIFT.EQ.INF) St.FT=COST(1)+.1
IF(NODES(BEG:.13N(K),2).LE.SHIFT) THEN
*IF(4)
SHIFT=NODES(BEGMSN(K),2)
IF(NODES(BEGMSN(K),2).LE.COST(1)) THEN
*IF(S)
DO 1266 Q=1,TRNCNT
BEGARC(Q)~0
ENDARC(Q)=0
1266 CONTINUE
ENDIF
*ENDIF(5)
ENDIF
*ENDIF(4)
IF(SHIFT.LT.TIMEPS) THEN
SHIFT=SHIFT+TIMEPS
ENDIF
IF((SHIFT-TIMEPS).LE.TIMEPS) THEN
SHIFT=0.
ELSE
SHIFT=SHIFT-TIMEPS
ENDIF
* THE TIME SHIFT HAS NOW BEEN DETERMINED.
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* STEP2: IMPLEMENTATION OF THE TIME SHIFT .
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GENERAL DESCRIPTION OF STEP 2:

THE IMPLEMENTATION OF THE MISSION'S TIME SHIFT IS PERFORMED BY SUB-
TRACTING THE AMOUNT OF THE TIME SHIFT FROM THE TIMES ASSOCIATED
WITH EACH NODE ALONG THE MISSION.

IF IN STEP 1| WE DETERMINED THAT THE TIME SHIFT WAS 0.0, THEN THE
NETWORK WILL NOT BE CHANGED AND WE CAN RETURN TO STEP 1 WITH A NEW
MISSION.

OTHERWISE, THE STATE OF THE NETWORK HAS BEEN CHANGED AND THE COSTS
OF THE TRANSSHIPMENT ARCS MUST BE UPDATED TO REFLECT THE TIME SHIFT.
NOT ALL OF THE TRANSSHIPMENT ARCS HAVE CHANGED, HOWEVER. ONLY THOSE
TRANSSHIPMENT ARCS WHICH ORIGINATE OR TERMINATE ON THE MISSION NEED
TO BE UPDATED.

IT IS RECOGNIZED THAT A TIME SHIFT MAY CAUSE THE OVERALL COST OF THE

UNFLOWED. SINCE WE CANNOT KNOW THIS BEFORE PERFORMING STEP 2, WE WILL
STORE THE CURRENT STATE OF THE NETWORK PRIOR TO PERFORMING STEP 3 IN
CASE THE CONDITIONS IN STEP 3 ARE NOT SATISFIED. IF THESE CONDITIONS
ARE NOT SATISFIED, WE WILL RESTORE THE PRE-SHIFT STATE OF THE NETWORK.
IF THE SHIFT EQUALS THE MISSION START TIME, SHIFT THE MISSION
AND UPDATE NODES AND COSCAP APPROPRIATELY. NO ARCS HAVE
BECOME INFEASIBLE. INCREMENT CHANGE BY 1.
IF THE SHIFT EQUALS COST(2) (DEFINED ABOVE), THEN TEMPORARILY
SHIFT THE MISSION AND UPDATE TNODES AND COSCAP APPROPRIATELY.
INCREMENT CHANGE BY 1.

L 2NN R DN ZEE JEK BN JEE ZEE JER NN BN JEE JNEK BEE BN BEE NN BN NEE JEE BN Y N

FLOW TO INCREASE, OR MAY CAUSE SOME PREVIOUSLY FLOWED CARGO TO REMAIN




* IF THE SHIFT EQUALS 0 OR INFINITY, THERE IS NO NEED TO PERFORM A SHIFT.
IF(SHIFT.NE.INF.AND.SHIFT.GT.0.) THEN
*IF(6)
* STORE PATHS, CAPACITIES, AND NODE TIMES (FOR THIS MISSION) IN CASE
* CHANGES HAVE TO BE UNDONE LATER.
DO 1280 M=1,PATHNUM
TTRNS(M)=TRNS(M)
TFLONM(M)=FLONUM(M)
DO 1290 V=1, FLONUM(M)
TPATH(M,V)=PATH(M,V)
1296 CONTINUE
1280 CONTINUE
DO 1300 V=BEGMSN(K),ENDMSN(K)
TNODES(V,2)=NODES(V,2)
1300 CONTINUE
DO 1315 V=1 ARCNUM
COSCAP(V,2)=COSCAP(V.8)
COSCAP(V,3)=COSCAP(V,6)
COSCAP(V,4)=COSCAP(V.T)
1315 CONTINUE
DO 1310 V=BEGMSN(K),ENDMSN(K)
NODES(V,2)=NODES(V,2)-SHIFT
1310 CONTINUE
* SETTING FEAS EQUAL TO 1 INDICATES THAT A FEASIBLE SHIFT WILL OCCUR.
* THATIS, NO CARGO WILL HAVE TO BE REFLOWED.
IF(BEGARC(1).EQ.0) FEAS=1
NOW THAT THE TIMES ASSOCIATED WITH THE MISSION HAVE BEEN
CHANGED, THE TIMES IN THE NODES MATRIX AND THE COSTS IN THE
COSCAP MATRIX MUST BE UPDATED.
CHANGE COSCAP FOR EVERY ARC THAT TERMINATES ON THE MISSION
1320 DO 1330 W=1 N-NUMSNK
IF(POINT(W,1).LT.0) GOTO 1330
DO 1360 V=POINT(W,1),POINT(W,2)
IFOINT(NODES(INT(COSCAP(V,1)),4)).EQ.K) THEN

*IF(7)
IF(INODES(W,2).LE.NODES(INT(COSCAP(V,1)),2)) THEN

*IF(9)
COSCAP(V,5)=NODES(INT(COSCAP(V,1)),2)-
C NODES(W,2)
IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LE.EPSILON) THEN
*IF(9.5)

* 8 & @

COSCAP(V,5)=INF
ENDIF
*ENDIF(9.5)
ELSE
*ELSE(9)
COSCAP(V,5)=INF
ENDIF
*ENDIF(9)
ENDIF
1360 CONTINUE
*ENDIF(7)
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1330 CONTINUE

* WE MUST ALSO CHANGE COSCAP FOR ALL THE ARCS EMANATING FROM THE MISSION

DO 1370 W=BEGMSN(K),ENDMSN(K)
IF (POINT(W,1).LT.0) GOTO 1370

DO 1380 V=POINT(W,1),POINT(W,2)
IF(INT(COSCAP(V,1)).GT.N-NUMSNK) GOTO 1380
IF(NODES(W,2).LEENODES(INT(COSCAP(V,1)),2)) THEN

*IF(10)
COSCAP(V,5)=NODES(INT(COSCAP(V,1)),2)}-NODES(W,2)
IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LE.EPSILON) THEN
*IF(10.6)
COSCAP(V,5)=INF
ENDIF
*ENDIF(10.6)
ELSE
*ELSE(10)
COSCAP(V,5)=INF
ENDIF

*ENDIF(10)
1380 CONTINUE
1370 CONTINUE

CONTINUE

THE TIME SHIFT HAS NOW BEEN IMPLEMENTED. IF ONLY A FEASIBLE SHIFT IS
*  APPLICABLE, WE NEED NOT PROCEED TO STEP 3. INSTEAD, WE RETURN TO
* STEP 1 WITH THE NEXT MISSION.

IF(FEAS.EQ.1) THEN
*IF(10.5)
* COMPUTE THE NEW OVERALL COST OF THE FLOW.
1375 TOTAL=0.

DO 1410 M=1,PATHNUM
TIS=NODES(PATH(M,FLONUM(M)-1),2)-NODES(PATH(M, 1),2)
TOTAL=TOTAL+(TIS*PTHFLO(M))

1410 CONTINUE

DO 1415 M=1, ARCNUM
COSCAP(M,6)=COSCAP(M,3)

COSCAP(M,7)=COSCAP(M4)
COSCAP(M,8)=COSCAP(M,2)
1415 CONTINUE
IF(SHIFT.GT.0.) CHANGE=CHANGE+1
GOTO 1250
ENDIF
*ENDIF(10.5)
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* STEP 3: MEASURING THE IMPACT OF THE TIME SHIFT .
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GENERAL DESCRIPTION OF STEP 3:
BY IMPLEMENTING THE TIME SHIFT, WE HAVE FORCED A TRANSSHIPMENT ARC
TO BECOME INFEASIBLE. THIS MEANS THAT EVERY COMMODITY WHICH FLOWED
OVER THAT ARC MUST BE REFLOWED. IN ORDER FOR A COMMODITY TO BE
REFLOWED, THREE CONDITIONS MUST BE SATISFIED:

CONDITION 1: AN ALTERNATE PATH MUST EXIST OVER WHICH THE CARGO

CAN BE FLOWED.




CONDITION 2: USING THIS ALTERNATE PATH MAINTAINS OR REDUCES THE
OVERALL COST OF THE NETWORK.
CONDITION 3: THERE MUST EXIST ENOUGH REMAINING CAPACITY ON THE
ALTERNATE PATH TO HANDLE THE REFLOWED COMMODITY.
IF ANY ONE OF THESE CONDITIONS IS NOT SATISFIED, THEN THE COMMODITY
CANNOT BE REFLOWED AND THE TIME SHIFT MUST BE REVERSED.
WE BEGIN OUR CHECK OF THE IMPACT BY FINDING ALL THE PATHS USED IN THE
FLOW THAT CONTAIN THE MOST CRITICAL ARC. FOR EACH PATH WE WILL CHECK
THE ABOVE CONDITIONS. THIS CHECK IS PERFORMED IN SUBROUTINE STEP3.
DO 1425 Q=1,TRNCNT
FIND ALL PATHS THAT CONTAIN THE CRITICAL ARC BEGARC(Q)-ENDARC(Q).
CHNGIT IS A 0-1 VARIABLE USED TO DETERMINE WHETHER A CONDITION HAS
BEEN VIOLATED. 0=NO VIOLATION, 1=VIOLATION.
CHNGIT=0
1420 DO 1430 M=1,PATHNUM
DO 1440 P=2,FLONUM(M)-1
IF(PATH(M,P-1).EQ.BEGARC(Q).AND.PATH(M,P).EQ.ENDARC(Q))
C THEN

*IF(12)

* A PATH HAS BEEN FOUND WHICH CONTAINS THE CRITICAL ARC. THE NUMBER

*  OF THE PATH (ITS PLACE IN THE SEQUENCE) IS STORED IN NUMPATH FOR USE

* IN SUBROUTINE STEP3.

NUMPATH=M

* SUBROUTINE STEP3 IS CALLED.

CALL STEP3(CHNGIT,K,CALLS,TOTAL,Q)
IF(CHNGIT.EQ.0) THEN

*IF(13)

*  ALL CONDITIONS FOR THIS PATH HAVE BEEN SATISFIED. PROCEED WITH THE

* NEXTPATH.

GOTO 1430
ELSE
*ELSE(13)
* A CONDITION FOR THIS PATH HAS NOT BEEN SATISFIED. PROCEED TO STEP 4.
GOTO 1450
ENDIF
*ENDIF(13)
ENDIF

*ENDIF(12)

1440 CONTINUE

1430 CONTINUE

1425 CONTINUE

*  ALL THE AFFECTED PATHS CONTAINING BEGARC(Q)-ENDARC(Q) HAVE SATISFIED

THE CONDITIONS OF STEP 3. THE TIME SHIFT OF STEP 2 IS PERMANENT.
PROCEED TO STEP 1 WITH A NEW MISSION.
COMPUTE THE NEW OVERALL COST OF THE FLOW.

TOTAL=0.

DO 1460 M=1,PATHNUM
TIS=NODES(PATH(M,FLONUM(M)-1),2)-NODES(PATH(M, 1),2)
TOTAL=TOTAL+(TIS*PTHFLO(M))

1460 CONTINUE

CHANGE=CHANGE+1

GOTO 1250
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STEP 4: REVERSAL OF THE TIME SHIFT .
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GENERAL DESCRIPTION OF STEP 4:

SINCE THE CARGO FLOWED OVER THE CRITICAL PATH CANNOT BE REFLOWED
WITHOUT INCREASING OVERALL COST OR REDUCING OVERALL CARGO, THE TIME
SHIFT OF STEP 2 HAS HAD AN DAMAGING IMPACT ON THE FLOW PATTERN.

WE MUST RESTORE THE NETWORK TO ITS PRE-SHIFT STATE, DETERMINE A TIME
SHIFT WHICH WILL MAINTAIN FEASIBILITY, AND RE-SHIFT THE MISSION.

RESET THE NODE TIMES FOR EACH NODE ALONG THE MISSION.

1450 DO 1470 V=BEGMSN(K),ENDMSN(K)

NODES(V,2)=TNODES(V,2)

1470 CONTINUE

RESET THE SHIFT TO EQUAL THE MINIMUM OF THE LEAST COST ARC AND THE
BEGINNING OF THE MISSION

1480 IF(COST(1).GENODES(BEGMSN(K),2)) THEN
*IF(14)

SHIFT=NODES(BEGMSN(K),2)
ELSE

*ELSE(14)

SHIFT=COST(1)
ENDIF

*ENDIF(14)

*

IF(SHIFT.LT.TIMEPS) THEN
SHIFT=SHIFT+TIMEPS

ENDIF

IF((SHIFT-TIMEPS).LE .TIMEPS) THEN
SHIFT=0.

ELSE
SHIFT=SHIFT-TIMEPS

ENDIF

IMPLEMENT THE TIME SHIFT BY ADJUSTING THE TIMES OF THE NODES ALONG

THE MISSION

DO 1490 V=BEGMSN(K),ENDMSN(K)
NODES(V,2)=NODES(V,2)-SHIFT

1490 CONTINUE

*

SET FEAS EQUAL TO 1 TO INDICATE THAT A FEASIBLE SHIFT WILL OCCUR.
FEAS=1
RESET THE PATHS TO THEIR PRE-SHIFT STATES
DO 1500 V=1,PATHNUM
TRNS(V)=TTRNS(V)
FLONUM(V)=TFLONM(V)
DO 1510 W=1,TFLONM(V)
PATH(V,W)=TPATH(V,W)

1510 CONTINUE
1500 CONTINUE

*
*
*
*

RETURN TO THE PORTION OF STEP 2 THAT UPDATES THE COSTS.

NOW THAT THE TIMES ASSOCIATED WITH THE MISSION HAVE BEEN

RESET AND CHANGED, THE TIMES IN THE COSCAP MATRIX MUST BE UPDATED.
CHANGE COSCAP FOR EVERY ARC THAT TERMINATES ON THE MISSION

2320 DO 2330 W=1,N-NUMSNK

IF(POINT(W,1).LT.0) GOTO 2330
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DO 2360 V=POINT(W, 1),POINT(W,2)
IFANTONODES(INT(COSCAP(V, 1)),4)).EQ.K) THEN
*IF(77)
IF(NODES(W,2).LENODES(INT(COSCAP(V,1)),2)) THEN
*IF(79)
COSCAP(V,5)=NODES(INT(COSCAP(V,1)),2)-
C NODES(W,2)
IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LE.EPSILON) THEN
*IF(79.5)
COSCAP(V,5)=INF
ENDIF
*ENDIF(79.5)

ELSE

*ELSE(79)
COSCAP(V,S)=INF
ENDIF
*ENDIF(79)
ENDIF
*ENDIF(77)
2360 CONTINUE
2330 CONTINUE
* WE MUST ALSO CHANGE COSCAP FOR ALL THE ARCS EMANATING FROM THE MISSION
DO 2370 W=BEGMSN(K).ENDMSN(K)
IF (POINT(W,1).LT.0) GOTO 2370
DO 2380 V=POINT(W,1),POINT(W,2)
IF(NODES(W,2).LENODES(INT(COSCAP(V,1)),2)) THEN
*IF(30)

COSCAP(V,5)=NODES(INT(COSCAP(V,1)),2)-NODES(W,2)
IF(ABS(COSCAP(V,6)-COSCAP(V,7)).LE.EPSILON) THEN
*IF(80.6) .

COSCAP(V,5)=INF
ENDIF
*ENDIF(80.6)
ELSE
*ELSE(80)

COSCAP(V,5)=INF

ENDIF
*ENDIF(80)

2380 CONTINUE

2370 CONTINUE
GOTO 1375
ELSE

*ELSE(6)

* IF THE SHIFT IS INFINITY OR 0.0, THEN GOTO TO STEP 1 WITH THE NEXT

*  MISSION.

GOTO 1250

ENDIF

*ENDIF(6)

1250 CONTINUE
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* OUTPUT .
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WRITE(*,*y'Changes = ',CHANGE,', Calls to Dijkstra = ',CALLS
AS THE PROGRAM PERFORMED STEPS 1-4, IT KEPT TRACK OF THE NUMBER OF
CHANGES IT MADE TO THE NETWORK.

ONE OPTION IS TO PERFORM STEPS 1-4 UNTIL NO MORE CHANGES CAN BE MADE.
INITIAL TESTING SHOWS THAT THIS TAKES HOURS TO ACCOMPLISH. AN
ALTERNATIVE IS TO PERFORM THE STEPS FOR ONLY ONE PASS THROUGH THE
MISSION SET AND THEN RETURNING CONTROL TO THE FLOW SUBROUTINES.

THE FOLLOWING IF STATEMENT ALLOWS THE USER TO DETERMINE WHICH OPTION
IS PREFERRED. COMMENTING OUT THE LINE FACILITATES THE SINGLE PASS
OPTION.

IF((MSNPAS.LT.PASSES).AND.(CHANGE.GT.0)) GOTO 1240
IF((MSNPAS.EQ.1).AND.(CHANGE.EQ.0)) TERCRI=1
OPEN(UNIT=8,FILE="ncwsched.dat' STATUS="UNKNOWN',FORM="FORMATTED')
THE FOLLOWING LOOP DESIGNATES A UNIQUE FILENAME TO EACH ITERATION'S
SCHEDULE.

THE FILE 'newsched.dat’' IS GENERATED FOR USE IN THE FLOW SUBROUTINES.

TEMP=ITER
EXT="c'

DO 1520 [=2,0,-1
RATIO=INT(TEMP/(10**1))

TEMP=TEMP-RATIO*(10**I)

POS(I+1)=CHAR(48+RATIO)

1520 CONTINUE

NS=POS(3)//POS(2)//POS(1)
FILNAM="sched"//NS//EXT
PTHNAM="paths"//NS/EXT
WRITE(S,1530)NUMMSN

1530 FORMAT(3)

DO 1540 I=1,NUMMSN
WRITE(S,1550)NUMNODE(),AC(I),ACCAP(I),MSNCOD(I)

1550 FORMAT(3,1X,A4,F5.12X,A1)

DO 1560 J=BEGMSN(I),ENDMSN(I)
WRITE(8,1570)NODIKO(J,1),NODES(J,2)

1570  FORMAT(A4,1x,F20.10)

1560 CONTINUE
1540 CONTINUE

OPEN(UNIT=14,FILE=PTHNAM,STATUS="UNKNOWN',FORM="FORMATTED")

THIS SECTION WRITES OUT THE PATH A COMMODITY TAKES. FOR EACH
ITERATION THIS PATH SET IS GENERATED. IF THE FLOW SUBROUTINES
ARE UNABLE TO IMPROVE UPON IT, THE MOST RECENT VERSION OF
‘paths###.c' WILL CONTAIN THE BEST FLOW PATTERN.

OPEN(UNIT=15,FILE="paths.out',STATUS='OLD',FORM=FORMATTED")

MODTOT=0.

MODFLO=0.

DO 1581 I=1,60
TRNDIS(1)=0
TISDIS(I)=0.
1581 CONTINUE
REFLOW=0.
DO 1580 I=1,PATHNUM
THIS SECTION DETERMINES HOW MUCH CARGO WAS REFLOWED BY COMPARING THE
* FINAL PATH MATRIX WITH THE INITIAL PATH MATRIX (STORED IN ‘paths.out’).
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* IF THE NUMBER OF NODES ON THE PATH HAS CHANGED, THERE HAS OBVIOUSLY
BEEN A REFLOW. IF THE NUMBER OF NODES IS THE SAME, WE MUST CHECK TO
*  SEE IF THE PATH ITSELF HAS CHANGED. IF IT HAS, THERE HAS BEEN A REFLOW.
READ(15,*)TISYS,TRANS,FLO,FLNUM,(INPATH(J),’=1,FLNUM)
IF(FLNUM.NE.FLONUM(I)) THEN
REFLOW=REFLOW+PTHFLO(l)
ELSE
DO 1582 K=1,FLONUM(l)
IFANPATH(K).NE.PATH(I,K)) THEN
REFLOW=REFLOW+PTHFLO(I)
GOTO 1583
ENDIF
1582 CONTINUE
ENDIF
1583 TRNDIS(TRNS()+1)=TRNDIS(TRNS(I)+1)+1
TISPTH=NODES(PATH(I,FLONUM(I)-1),2)-NODES(PATH(,1),2)
IF(TISPTH.LT.0.) THEN
WRITE(*,*)'PATH "1’ HAS NEGATIVE TIS!'
ENDIF
MODTOT=MODTOT+TISPTH*PTHFLO(l)
MODFLO=MODFLO+PTHFLO(I)
TISDIS(INT(TISPTH+1))=TISDISANT(TISPTH+1))+PTHFLO(l)
WRITE(14,*) TIS: ,TISPTH,” FLOW: ',PTHFLO(l)
WRITE(14,*)' COST OF THIS FLOW: ‘. TISPTH*PTHFLO(l)
WRITE(14,*)' NO. OF TRANSSHIPMENTS: ', TRNS(T)
WRITE(14,*) ICAO MSNNO. TIME NODE NUMBER'
WRITE(14,*) '
DO 1590 J=1,FLONUM()
WRITE(14,1600)NODIKO(PATH(L,J),1),INT(NODES(PATH(,J) 4)),
C  NODES(PATH(,J).2),PATH(J)
1600 FORMAT(2X,A4,4X,14,5X,F5.2,5X 16)
1590 CONTINUE
WRITE(14,*)
WRITE(14,*)
1580 CONTINUE
MODFLO=0.
DO 1595 JNUMCAR+1,N-NUMSNK
IF(POINT(J,1).LT.0) GOTO 1595
DO 1596 K=POINT(J,1),POINT(J,2)
IFANT(COSCAP(K,1)).GT.(N-NUMSNK)) THEN
MODFLO=MODFLO+COSCAP(K.7)
ENDIF
1596 CONTINUE
1595 CONTINUE .
WRITE(14,*)TOTAL CARGO FLOWED (TONS): ', MODFLO
WRITE(14,*)TOTAL COST OF THIS FLOW: 'MODTOT
WRITE(14,*) TOTAL CARGO REFLOWED (TONS): ',REFLOW
WRITE(7,*)TOTAL CARGO REFLOWED (TONS): ',REFLOW
WRITE(*,*YREFLOW THIS ITERATION (tons): ,REFLOW
WRITE(14,*)
WRITE(14,*) TRANSSHIPMENT DISTRIBUTION'
WRITE(14,*)

101




WRITE(14,*) NUMBER OCCURENCES'
WRITE(14,*) !
WRITE(7,*) ,
WRITE(7,*)' TRANSSHIPMENT DISTRIBUTION'
WRITE(7,*)
WRITE(7,*) NUMBER OCCURENCES'
WRITE(7,*) emennneas!
DO 1503 I=1,60
IF (TRNDIS(1).GT.0) THEN
WRITE(14,1505)(1-1), TRNDIS(I)
WRITE(7,1505)(1-1), TRNDIS(I)
1505 FORMAT(6,113)
ENDIF
1503 CONTINUE
WRITE(14,*)
WRITE(14,*)' TIME-IN-SYSTEM DISTRIBUTION'
WRITE(14,*)
WRITE(14,*) DAYS TONNAGE'
WRITE(14,%)' coereemermnens’
WRITE(7,*)
WRITE(7,*)' TIME-IN-SYSTEM DISTRIBUTION'
WRITE(,*)
WRITE(7,*) DAYS TONNAGE'
WRITEU,')' ene’
DO 1504 1=1,60
IF (TISDIS(1).GT.0.) THEN
WRITE(14,1506)(1-1),1, TISDIS(T)
WRITE(7,1506)(1-1),1, TISDIS(I)
1506 FORMAT(2,-,12,F10.2)
ENDIF
1504 CONTINUE
WRITE(S,*)
CLOSE(8)
CLOSE(14)
CLOSE(15)
RETURN
END

SUBROUTINE STEP3(CHNGIT,K,CALLS,TOTAL,Q)

THIS SUBROUTINE IS A COMPANION TO SUBROUTINE MODMSN. IT CHECKS
TO SEE IF THE CONDITIONS OF STEP 3 ARE SATISFIED.
RECALL THAT THOSE CONDITIONS ARE:
CONDITION 1: AN ALTERNATE PATH MUST EXIST OVER WHICH THE CARGO
CAN BE FLOWED.
CONDITION 2: USING THIS ALTERNATE PATH MAINTAINS OR REDUCES THE
OVERALL COST OF THE NETWORK.
CONDITION 3: THERE MUST EXIST ENOUGH REMAINING CAPACITY ON THE
ALTERNATE PATH TO HANDLE THE REFLOWED COMMODITY.

*® % #% ® # 8 ® 88

INTEGER N,PATHNUM,PATH(500,75),NUMCAR
INTEGER NUMSNK NUMNODE(4999), BEGMSN(1000), ENDMSN(1000)
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INTEGER FLONUM(4999),NUM(4999), NUMMSN,S,T
INTEGER ITER,POINT(4999,2),ARCNUM,STPATH
INTEGER FLNUM,FLPATH(4999),NUMPATH
INTEGER CALLS,CHNGIT,CNT,NUMTRN,LOTRN
INTEGER K,TRNDIS(60), TRNS(500)

INTEGER BEGARC(500),ENDARC(500)

INTEGER CMPCNT,PREV

REAL COSCAP(89999,8),INF,PRED(4999),DIST(4999)
REAL NODES(4999,4), TNODES(4999,4),ACCAP(1000)
REAL PTHFLO(500),TOTAL,TCOSFL,TISDIS(60)
REAL TIS, TIA,DELTA

REAL EPSILON,TIMEPS

CHARACTER NODIK0(4999,2)*4
CHARACTER AC(1000)*4,MSNCOD(1000)*1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /PARAMS/ MAXIT MAXALT,MAXTRN,CARCRLPASSES,SORCRL, TIMEPS
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES
COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS
COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,
C FLONUM, PATHNUM, PTHFLO, MSNCOD
COMMON /CHNG/ NUMPATH, BEGARC, ENDARC
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* CONDITION 1: FINDING ALTERNATE PATHS .
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GENERAL DESCRIPTION OF CONDITION 1:
IN SUBROUTINE MODMSN A PATH (NUMBERED NUMPATH) WAS FOUND WHICH
CONTAINS THE CRITICAL ARC. IN ORDER TO DETERMINE WHETHER ALTERNATE
PATHS EXIST WE WILL CALL SUBROUTINE DIJKSTRA.
IF ANY SUCH ALTERNATE PATHS EXIST, SUBROUTINE DUUKSTRA WILL GENERATE
A PARTIAL LIST OF THEM. THIS PATH REPRESENTS ALL THE CANDIDATES FOR
REPLACEMENT PATHS. IT IS THESE PATHS TO WHICH CONDITIONS 2 AND 3 WILL
BE APPLIED.
DEFINE S AND T TO BE USED IN DIJKSTRA'S ALGORITHM
S=PATH(NUMPATH, 1)
T=PATH(NUMPATH,FLONUM(NUMPATH))
FORCE THE MOST CRITICAL ARC TO BE INFEASIBLE. THIS
SHOULD HAVE BEEN DONE WITH TIME SHIFT, BUT JUST IN CASE...
DO 1620 V=POINT(BEGARC(Q),1),POINT(BEGARC(Q),2)
IFANT(COSCAP(V, 1)).EQ.ENDARC(Q)) THEN
*IF(1)
COSCAP(V,5)=INF
*  SETTING COSCAP(V,8) TO 0 REMOVES THE ARC FROM FUTURE CONSIDERATION.
COSCAP(V,8)=0.
ENDIF
*ENDIF(1)
1620 CONTINUE
*  FILE ‘alt.out CONTAINS THE CANDIDATE ALTERNATE PATHS FROMSTO T.
OPEN(UNIT=11,FILE="alt2.out', STATUS="UNKNOWN',FORM="FORMATTED")
IF(S.EQ.0) WRITE(*,*)'S = 0 BEFORE DIJKSTRA'
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CALL DUKSTRA(S,T,STPATH,LOTRN)
CLOSE(11)
OPEN(UNIT=13,FILE="alt2.out' STATUS='OLD",FORM="FORMATTED')
CALLS=CALLS+1
IF(STPATH.EQ.0) THEN
*IFQ)
IF NO ALTERNATE PATH CAN BE FOUND, CONDITION 1 HAS NOT BEEN
SATISFIED.
SET THE VARIABLE CHNGIT TO 1, INDICATING THAT A CONDITION HAS NOT
BEEN SATISFIED. RETURN TO SUBROUTINE MODMSN.
CHNGIT=1
RETURN
ENDIF
*ENDIF(2)
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* CONDITION 2: DOES AN ALTERNATE PATH EXIST WHICH REDUCESOR ~ *
. OR MAINTAINS THE OVERALL COST OF THE FLOW? .
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GENERAL DESCRIPTION OF CONDITION 2:
WE NOW HAVE A LIST OF CANDIDATE ALTERNATE PATHS. WE MUST DETERMINE
IF REPLACING THE CURRENT PATH WITH AN ALTERNATE PATH MAINTAINS OR
REDUCES THE OVERALL COST OF THE FLOW. IF NO SUCH PATH EXISTS, THEN
CONDITION 2 HAS NOT BEEN SATISFIED AND THE PROGRAM RETURNS TO
SUBROUTINE MODMSN.
1640 READ(13,*,END=1650)TIS,TIA,DELTA NUMTRN,FLNUM,
c (FLPATH(V),V=1,FLNUM)
CHECK TO SEE IF THE COST OF FLOWING THE CARGO ALONG THIS PATH IS
LESS THAN BEFORE THE SHIFT.
TCOSFL IS THE OVERALL COST OF THE FLOW GIVEN THAT THE CURRENT PATH
HAS BEEN REPLACED BY AN ALTERNATE PATH.
TCOSFL~0.
DO 1660 I=1,PATHNUM
IFA.NENUMPATH) THEN
*IF(3)
TIS=NODES(PATH(I,FLONUM())- 1),2)-NODES(PATH(, 1),2)
TCOSFL~TCOSFL+TIS*PTHFLO(])
ENDIF
*ENDIF(3)
1660 CONTINUE
* ADD COST OF NEW ALTERNATE PATH
TIS=NODES(FLPATH(FLNUM-1),2)-NODES(FLPATH(1),2)
TCOSFL=TCOSFL+(PTHFLO(NUMPATH)*TIS)
IF(TCOSFL.GT.TOTAL) THEN
*IF(4)
*  SINCE USING THIS PATH INCREASES OVERALL COST, WE MUST CONTINUE TO
* LOOK FOR ANOTHER ALTERNATE PATH.
GOTO 1640
ENDIF
*ENDIF(4)
* IF WE FIND AN ALTERNATE PATH THAT DOES NOT INCREASE THE OVERALL COST,
* WE PROCEED ON TO CONDITION 3.
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* CONDITION 3: DOES AN ALTERNATE PATH EXIST WHICH REDUCES OR *
* MAINTAINS 'HE OVERALL COST OF THE FLOW AND *

» HAS ENOUGH REMAINING CAPACITY TO HANDLE THE *

. CURRENT FLOW? .
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GENERAL DESCRIPTION OF CONDITION 3:
WE HAVE NOW FOUND AN ALTERNATE PATH WHICH, IF USED, WILL MAINTAIN OR
REDUCE THE OVERALL COST OF THE FLOW. BUT BEFORE WE CAN PERMANENTLY
REPLACE THE CURRENT PATH WITH THIS ALTERNATE, WE MUST VERITY THAT
THE ALTERNATE HAS ENOUGH CAPACITY TO HANDLE THE CURRENT FLOW.
TO CHECK THE CAPACITIY OF THE ALTERNATE PATH WE NEED ONLY LOOK AT THE
CAPACITIES OF THE ARCS WHICH ARE ON THE ALTERNATE PATH AND NOT ON THE
ORIGINAL PATH.
DO 1670 I=2,FLNUM-2
DO 1675 J=2,FLONUMNNUMPATH)-2
IF(PATH(NUMPATH,J).EQ.FLPATH(1)).AND.(PATH(NUMPATH,J+1).
C  EQ.FLPATH(+1))) THEN
*IF(4.5)
* A MATCH HAS BEEN FOUND, SO WE MOVE ON TO THE NEXT ARC IN THE
* ALTERNATE PATH.
GOTO 1670
ENDIF
*ENDIF(4.5)
1675 CONTINUE
* IF THIS SECTION IS REACHED, NO MATCH HAS BEEN FOUND SO WE MUST CHECK
* THE CAPACITY OF THE APPROPRIATE ARC IN THE ALTERNATE PATH.
IF(POINT(FLPATH(I),1).EQ.-1) THEN
WRITE(*,*YBEFORE 1680, -1'
ENDIF
DO 1680 A=POINT(FLPATH(T),1),POINT(FLPATH(I),2)
IFANT(COSCAP(A,1)).EQ.FLPATH(I+1)) THEN
*IF(S)
IF((COSCAP(A,6)-COSCAP(A,7)).LT.PTHFLO(NUMPATH))
C THEN
*IF(6)
* THIS ALTERNATE PATH DOES NOT HAVE ENOUGH CAPACITY. WE MUST CONTINUE
* THE SEARCH FOR A PATH WHICH SATISFIES CONDITIONS 2 AND 3.
GOTO 1640
ELSE
*ELSE(6)
ENDIF
*ENDIF(6)
ENDIF
*ENDIF(5)
1680 CONTINUE
1670 CONTINUE
* WE HAVE FOUND A PATH THAT SATISFIES CONDITIONS 2 AND 3. WE MUST
* NOW REPLACE THE CURRENT PATH WITH THIS NEW ALTERNATE PATH.
* IF THE NUMBER OF TRANSSHIPMENTS ON THIS NEW ALTERNATE PATH EXCEEDS
* 0, THEN WE WILL CALL SUBROUTINE COMPRESS TO COMPRESS IT TO ITS
* ACTUALPATH.
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* CALLING SUBROUTINE COMPRESS *
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*  ESTABLISH THE PREDECESSOR ARRAY
DO 1671 I=2,FLNUM
PRED(FLPATH(I))=FLPATH(-1)
1671 CONTINUE
PRED(S)=-1
if{(ITER EQ.3).AND.(K.EQ.120)) THEN
WRITE(*,*)’PATH = 'NUMPATH,' P
¢ (PRED(FLPATH(A)),A=1,FLNUM)
ENDIF
CALL COMPRESS(S,T,STPATH,NUMTRN)
IF (NUMTRN.GT.MAXTRN) GOTO 1640
WE MUST GLEAN FROM THE NEW PREDECESSOR ARRAY (RETURNED BY COMPRESS)
* WHAT THE NEW COMPRESSED PATHIS.
FLNUM=0
CMPCNT=T
1672 IF(PRED(CMPCNT). EQ.- 1) THEN
FLNUM=FLNUM+1
GOTO 1673
ELSE
FLNUM=FLNUM+1
CMPCNT=PRED(CMPCNT)
GOTO 1672
ENDIF
1673 CONTINUE
FLPATH(FLNUM)=T
FLPATH(1)=S
PREV=T
DO 1674 [=FLNUM-1,2,-1
FLPATH(I)=PRED(PREV)
PREV=FLPATH(l)
1674 CONTINUE
* THE NEW PATH HAS NOW BEEN COMPRESSED.
* NOW THAT WE KNOW THE NEW PATH CAN HANDLE THE NEW FLOW, WE MUST
* REMOVE THE OLD FLOW FROM THE PATH AND REPLACE IT WITH THE NEW.

BEEEB SR SRS ESEE SRS EEEEEBISS SRS ER RS LR L LS LR AR LR R RS E S % L2 1

* PATH REPLACEMENT *
SRS EEEREB SR LSS EEEE S RVEEE SRR RSB ERE X B LB RS R LSS S LB BB RSB LR S E R EEREREESEEREE SR
GENERAL DESCRIPTION OF PATH REPLACEMENT:
WE REPLACE THE CURRENT PATH WITH THE NEW PATH BY PERFORMING SEVERAL
STEPS:
STEP 1: ADD THE CURRENT FLOW BACK TO THE OLD PATH
STEP 2: DETERMINE IF THE ARCS ON THE OLD PATH ARE USED ELSEWHERE.
IF NOT, REMOVE THESE ARCS FROM CONSIDERATION IN
SUBROUTINE MODMSN STEP 1.
STEP 3: SWITCH THE PATHS.
STEP 4: INCREMENT THE FLOW OF THE NEW PATH APPROPRIATELY.
STEP 5: MARK THE NEW PATH WITH APPROPRIATE MISSION IDENTIFIERS.

SXXSERERESERB SRR LR R RSB LSS ES RS ESEARERER S S SRBE LB AREEEEEBEE RSB EX SRR R ESE S

* PATH REPLACEMENT STEP 1: REMOVE THE CURRENT FLOW FROM THE OLD PATH *

BRSPS SRS SRR R NSNS R RO NSRS EROR SRS *SEEE (2t i 2R3 2222 R R4ttt )

®* % & & % % % & #* ®
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DO 1690 I=1, FLONUM(NUMPATH)-1
IF(POINT(PATH(NUMPATH,]),1).EQ.-1) THEN
WRITE(*,*YBEFORE 1700, -1'
ENDIF
DO 1700 J=POINT(PATH(NUMPATH,]),1),POINT(PATH(NUMPATH,]),2)
IF(INT(COSCAP(J,1)).EQ.PATH(NUMPATH,1+1)) THEN

*IF(8)
COSCAP(J,7)=COSCAP(J,7)-PTHFLO(NUMPATH)
ENDIF
*ENDIF(8)
1700 CONTINUE
1690 CONTINUE

RSB EEESENNISR PSR ISNELE SR 0050 LRSS LSS0 LS SR ERSRSRELELSI 0SSR SESSSE S

* PATH REPLACEMENT STEP 2: DETERMINE IF ARCS ARE USED ELSEWHERE ~ *
S SSEE BB SRER SRS RS ESEESNSS R SRS RS IS ES SRS S SSSS BP0 00O SRS OSSR ESS RSP NSRS
DO 1710 I=1,FLONUM(NUMPATH)-1
CNTIS A 0-1 VARIABLE USED TO DETERMINE IF AN ARC IS USED ELSEWHERE.
*  0=NOT USED, 1=USED.
CNT=0
DO 1720 J=1,PATHNUM
IFJ.NENUMPATH) THEN
*IF(9)
DO 1730 V=1,FLONUM(J)-1
IF(PATH(NUMPATH,1).EQ.PATH(J,V).AND.
C PATH(NUMPATH,1+1).EQ.PATH(J,V+1)) THEN
*IF(10)
CNT=1
ENDIF
*ENDIF(10)
1730  CONTINUE
ENDIF
*ENDIF(9)
1720 CONTINUE
IF(CNT.EQ.0) THEN
IF(POINT(PATH(NUMPATH,]),1).EQ.-1) THEN
WRITE(*,*yBEFORE 1740, -1'
ENDIF
*IF(11)
DO 1740 V=POINT(PATH(NUMPATH,]),1),POINT(PATH(NUMPATH,]),2)
IFANT(COSCAP(V,1)).EQ.PATH(NUMPATH,1+1)) THEN
*IF(12)
COSCAP(V,8)=0.
ENDIF
*ENDIF(12)
1740  CONTINUE
ENDIF
*ENDIF(11)
1710 CONTINUE

SEEEESUEERRREEFBESEEER RIS AS LRSS SR RSB EB R LRSS REEBEREEE RS S LR RS EEER R SRR ES S

* PATH REPLACEMENT STEP 3: SWITCH THE PATHS .

SEEEBRBEERRREARER SRR RS RAEEBEEER SRS RS EREBEL SIS RES SRR RS LR R RS E SRS RS R REEBEE SR %

TRNS(NUMPATH)=-NUMTRN
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FLONUMMNNUMPATH)=FLNUM
DO 1750 I=1 FLONUM(NUMPATH)
PATH(NUMPATH,I)=FLPATH(Q)
1750 CONTINUE

5662 SRS ESSSS NS S S S ELVELSESESSESSESLERSSSSEESSSVIRESES2S00BSESIESSEESSSS

* PATH REPLACEMENT STEP 4: INCREMENT THE FLOW OF THE NEW PATH
SEEBSERSESNESPEREESSE SRS SEEESEESSSUSSESSESSRERSSBI0ISESEESSESSESSEEREESESESS
DO 1760 I=1,FLONUM(NUMPATH)-1
IF(POINT(PATH(NUMPATH,1),1).EQ.-1) THEN
WRITE(*,*) BEFORE 1770, -1'
ENDIF
DO 1770 J=POINT(PATH(NUMPATH,]),1),POINT(PATH(NUMPATH,]),2)
IF(INT(COSCAP(J,1)).EQ.PATH(NUMPATH,I+1)) THEN
*IF(13)
COSCAP(J,7)=COSCAP(J,7)+ PTHFLOQNUMPATH)
IF(ABS(COSCAP(J,6)-COSCAP(J,7)).LE.EPSILON) THEN
*IF(13.5)
COSCAP(J,5)=INF
ENDIF
*ENDIF(13.5)
ENDIF
*ENDIF(13)
1770 CONTINUE
1760 CONTINUE
SRS AL LB RE SRS SR EESSS RS E SV ES S LSS E SRS LR SEE SRS S SRS S E LSS S EE SRS EBBS SR
* PATH REPLACEMENT STEP 5: MARK THE NEW PATH WITH APPROPRIATE MISSION *
. IDENTIFIERS .
S80S eSS SRS eSS RO B SO S S S SNBSS EI NS E S SRS ESRSSS S
DO 1780 I=1, FLONUM(NUMPATH)-2
IF(POINT(PATH(NUMPATH,]),1).EQ.-1) THEN
WRITE(*,*y BEFORE 1790, -1'
ENDIF
DO 1790 J=POINT(PATH(NUMPATH,]),1), POINT(PATH(NUMPATH,]),2)
IFANT(COSCAP(J,1)).EQ.PATHINUMPATH,1+1)) THEN
*IF(14)
DO 1800 V=1,NUMMSN
IFANT(COSCAP(J,1)).GE.BEGMSH(V).AND.
o INT(COSCAP(J,1)).LE.ENDMSN(V)) THEN
*IF(15)

COSCAP(J,8)=V*1.0
ENDIF
*ENDIF(15)
1800 CONTINUE
ENDIF
*ENDIF(14)
1790 CONTINUE
1780 CONTINUE
* WENOW HAVE REPLACED THE CURRENT PATH WITH THE NEW ALTERNATE PATH.
DO 1785 V=POINT(PATH(NUMPATH,1),1),FOINT(PATH(NUMPATH,1),2)

IF(INT(COSCAP(V,1)).EQ.PATH(NUMPATH,2)) THEN

ENDIF
1785 CONTINUE
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* WE CAN CLOSE "alt.out’' AND RETURN TO SUBROUT.NE MODMSN
CLOSE(13)
RETURN
IF WE HAVE EXHAUSTED THE LIST OF CANDIDATE ALTERNATE PATHS AND FOUND
NONE WHICH SATISFY CONDITIONS 2 AND 3, WE SET CHNGIT TO 1 TO INDICATE
THAT A FEASIBLE SHIFT WILL OCCUR. WE CLOSE ‘alt.out' AND RETURN TO
SUBROUTINE MODMSN.
1650 CHNGIT=1
CLOSE(13)
RETURN
END

SUBROUTINE COUNTER()

SESSEES RS SB LSS S SRS B SRS ESS LSRR OSSR SRDSSSESEESESEBRERSS

INTEGER N,PATHNUM,PATH(500,75),NUMCAR

INTEGER NUMSNK,NUMNODE(4999), BEGMSN(1000), ENDMSN(1000)
INTEGER FLONUM(4999),.NUM(4999),NUMMSN,K

INTEGER ITER,POINT(4999,2) ARCNUM,CNT

INTEGER TRNDIS(60), TRNS(500)

REAL COSCAP(89999,8),INF,PRED(4999),DIST(4999)
REAL NODES(4999,4), TNODES(4999,4),ACCAP(1000)
REAL TIME(1000), TEMTIME,PTHFLO(500)

REAL EPSILON,TISDIS(60)

CHARACTER NODIKO(4999,2)*4
CHARACTER AC(1000)*4,JCAO(1000)*4
CHARACTER TEMICAO*4,TEMACFT*4,ACFT(1000)*4,MSNCOD(1000)* 1

COMMON /CONSTS/ N, INF, NUMCAR, NUMSNK, NUMMSN, ITER,EPSILON
COMMON /ARRS/ COSCAP, POINT, NODES, NODIKO, TNODES

COMMON /FLOW/ PRED, DIST, ARCNUM, TRNDIS, TRNS, TISDIS

COMMON /MARK/ NUMNODE, AC, ACCAP, BEGMSN, ENDMSN, NUM, PATH,
C FLONUM, PATHNUM, PTHFLO, MSNCOD

OPEN(UNIT=11,FILE="count.out',STATUS="UNKNOWN',FORM="FORMATTED")
* SORTONICAO
DO 1810 I=1 NUMMSN
ICAO(I)>NODIKO(BEGMSN(I),1)
TIME(I)>NODES(BEGMSN(I),2)
ACFT(I)=AC()
1810 CONTINUE
DO 1820 I=1 NUMMSN
TEMICAO='ZZZZ
DO 1830 I=INUMMSN
IFACAO(QJ).LT.TEMICAO) THEN
TEMICAO=ICAO(J))
K=J
ENDIF
1830 CONTINUE
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*  SWITCH
TEMICAO=ICAO()
TEMTIME=TIME(Q)
TEMACFT=ACFT()
ICAO(I)=ICAO(K)
TIMEQ)=TIME(K)
ACFT(@)=ACFT(K)
ICAO(K)~TEMICAO
TIME(K)=TEMTIME
ACFT(K)=TEMACFT

1820 CONTINUE

* NOW SORT ON ACFT AT EACH ICAO

DO 1840 I=1,NUMMSN
TEMACFT='2ZZZ
DO 1850 J=ILNUMMSN
IFACAO(J).EQ.ICAO(l)) THEN
IF(ACFT(J).LT.TEMACFT) THEN
TEMACFT=ACFT())
K=J
ENDIF
ELSE
GOTO 1850
ENDIF

1850 CONTINUE
TEMICAO=ICAO())
TEMTIME=TIME(Q)
TEMACFT=ACFT(I)
ICAOQ)=ICAO(K)
TIME()=TIME(K)
ACFT()=ACFT(K)
ICAO(K)=TEMICAO
TIME(K)=TEMTIME
ACFT(K)=TEMACFT

1840 CONTINUE

* NOW SORT ON TIME WITHIN EACH ICAO-ACFT PAIR

DO 1860 I=1, NUMMSN
TEMTIME=INF
DO 1870 J=LNUMMSN
IFACAO(J).EQ.ICAO(D)) THEN
IF(ACFT(J).EQ.ACFT(I)) THEN
IF(TIME(J).LT.TEMTIME) THEN
TEMTIME=TIME())
K=J
ENDIF
ELSE
GOTO 1870
ENDIF
ELSE
GOTO 1870
ENDIF

1870 CONTINUE

TEMICAO=ICAO(I)
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TEMTIME=TIME()
TEMACFT=ACFT(l)
ICAO(M=ICAO(K)
TIME(I)=TIME(K)
ACFT()=ACFT(K)
ICAO(K)=TEMICAO
TIME(K)=TEMTIME
ACFT(K)=TEMACFT
1860 CONTINUE
* NOW COUNT THE NUMBER OF TAKEOFFS AT EACH ICAO FOR EACH ACFT
* ATEACHTIME
CNT=1
DO 1880 I=2NUMMSN
IFACAO(I).EQ.ICAO(-1)) THEN
IF(ACFT(1).EQ.ACFT(-1)) THEN
IF(TIME(T).EQ. TIME(I-1)) THEN
CNT=CNT+1
ELSE
WRITE(11,1890)ICAO(-1),ACFT(I-1),TIME(-1),CNT
CNT=1
ENDIF
ELSE
WRITE(1 1,1890)ICAO(-1),ACFT(I-1), TIME(-1),CNT
CNT=1
ENDIF
ELSE
WRITE(11,1890)ICAO(I-1), ACFT(I-1), TIME(I-1),CNT
CNT=1
ENDIF
1880 CONTINUE
WRITE(11,1890)ICAO(NUMMSN),ACFT(NUMMSN), TIME(NUMMSN),CNT
1890 FORMAT(A4,2X,A4,2X F7.3.2X J4)
CLOSE(11)
RETURN
END

EXEXSERERRE END - MAI'N PROGRAM SEREBEEE RS
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Appendix C: Program Creating the Initial Schedule

This appendix is the program "makesked.f", which generates the initial schedule

“schedule.dat” using the input files contained in Appendices D-G.

PROGRAM MAKESKED

*x
«
%*

* X X N N X ¥

10

L R BN NEE BEE BN

CREATED 28 OCTOBER 1993
THIS PROGRAM GENERATES THE SCHEDULE, CREATED AS A FILE CALLED
‘tempsked.dat’. IT USES INPUT FROM ‘schedule.raw’ AND '‘routes.dat'’

CHARACTER STA(999,20)*4,STATYP(999,20)*1,ICAO(999)*4,AC(999)*4
CHARACTER BASE1(999)*4,BASE2(999)*4,JUNK5*4,MSNCOD(999)*1

INTEGER MSNCNT,ROUCNT,NODENUM,ROUTE(999),ROUNUM(999), TOTMSN
INTEGER ACTYPE(999),LEG

REAL START(999),GTIME(999), GRND(9), TIME(999),RON(999)

REAL REMAIN(9),JUNK1,JUNK2,JUNK3,JUNK4,FLY(999),FLYTIME

REAL SPEED(9),CAP(9),ACCAP(999)

OPEN(UNIT=1,FILE="jet.dat',STATUS ="'OLD',FORM="FORMATTED")
OPEN(UNIT=2,FILE='fly.dat',STATUS ="'OLD',FORM="FORMATTED")
OPEN(UNIT=3,FILE = "schedule.raw',STATUS ='OLD',FORM ="'FORMATTED')
OPEN(UNIT =4,FILE="routes.dat', STATUS="OLD' ,FORM='FORMATTED")
OPEN(UNIT=5,FILE = 'schedule.dat',STATUS="UNKNOWN',FORM =

C 'FORMATTED’)

THE FOLLOWING LOOP READS THE SPEED FACTORS FOR EACH AIRCRAFT.
THE ORDER IS THE SAME AS THE 'TYPES' IN NEXT SECTION. SPEED IS
USED LATER TO CALCULATE THE FLYING TIME ALONG A PARTICULAR LEG
FOR A PARTICULAR AIRCRAFT. THE FLYING TIMES, WHICH WILL LATER
BE READ FROM ‘fly.dat' ARE FOR THE C-141 ONLY. SPEED ACTS AS THE
CONVERSION FACTOR FOR ALL OTHER AIRCRAFT. SPEED*(C141
FLYTIME)=FLYING TIME FOR THE AIRCRAFT.

READ(1,*)
DO 101=1,9
READ(1,*)JUNK1,JUNKS,SPEED(I),CAP(l)
CONTINUE

THE FOLLOWING CODES WILL BE USED IN THE NEXT SECTION TO
ESTABLISH AN APPROPRIATE GROUND TIME AND RON TIME FOR EACH
MISSION:

C005 = TYPE 1

Cl41 = TYPE2

C130 = TYPE 3
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*

20

*

&8

L JEE BEK BEE R BEE JEE N )

DCO8 = TYPE 4
DC10 = TYPE §
B747 = TYPE 6
KC10 = TYPE 7
C017 = TYPE 8
KC135= TYPE 9

THE FOLLOWING STANDARD GROUND TIMES AND REMAIN OVER NIGHT
(RON) TIMES ARE READ IN FROM ‘jet.dat'. TO CONVERT THE TIME TO DAYS,
THE TIMES 1N ‘jet.dat' WILL BE DIVIDED BY 24 IN A LATER SECTION.

DO201=1,9
READ(1,*)JUNK1,GRND(1),JUNK2,JUNK3,JUNK4,REMAIN(I)
CONTINUE

THE FOLLOWING LOOP READS IN THE FLYING TIME DATA FROM ‘fly.dat’.
THE FIRST TWO COLUMNS ARE THE BASES OF THE LEG. THE NEXT
COLUMN IS THE FLYING TIME FOR A C141.

LEG=0
DO 30 I=1,1000000
READ(2,*,END=40)BASE1(I), BASE2(I),JUNK1,FLY(I)
LEG=LEG+1
CONTINUE
CONTINUE

THE FOLLOWING LOOP READS IN THE DATA FROM ‘routes.dat’. THE FIRST
COLUMN OF ‘routes.dat' IS THE ROUTE NUMBER. THE FOLLOWING
COLUMNS CONTAIN THE BASES ON THE ROUTE ALONG WITH THE TYPE OF
BASE, WHERE

1 = MISSION ORIGIN

4 = STANDARD GROUND TIME

6 = RON

9 = MISSION TERMINATION

ROUCNT=0
DO 50 1=1,100000
READ(4,60,END=70)ROUNUM(I),(STA(1,J),STATYP(,J),J =1,20)
FORMAT(I3,1X,20(1X,A4,A1))
ROUCNT=ROUCNT +1
CONTINUE
CONTINUE

THE FOLLOWING LOOP READS IN THE MISSION DATA FROM 'schedule.raw’.
THE FIRST COLUMN IS THE ROUTE NUMBER, THE SECOND COLUMN IS THE
AIRCRAFT TYPE, AND THE THIRD COLUMN IS THE START TIME OF THE
MISSION.
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MSNCNT=0

TOTMSN=0

DO 80 1=1,100000
MSNCOD()="C'

THE FOLLOWING READ SHOULD BE USED IF ‘schedule.raw' IS EVER UPDATED
TO INCLUDE A CODE TO DISTINGUISH CARGO REQUIREMENTS 'C’' AND
FREQUENCY REQUIREMENTS ‘'F'. AS IS, THE PROGRAM ASSUMES ALL ARE
‘C' UNLESS OTHERWISE INSTRUCTED.

%® % % #®

c READ(3,*,END=90)ROUTE(I),AC(),START(),MSNCOD(I)
READ(3,* ,END=90)ROUTE(I),AC(I),START(I)
IF(AC(I).EQ.'C005') ACTYPE()=1
IF(AC(D).EQ.'C141") ACTYPE(l)=2
IF(AC(I).EQ.'C130") ACTYPE(D)=3
IF(AC(I).EQ.'DC08") ACTYPE()=4
IF(AC(D.EQ.'DC10') ACTYPE(D)=5
IF(AC(I).EQ.'B747") ACTYPE(I)=6
IF(AC(I).EQ.'KC10") ACTYPE()="7
IF(AC(D.EQ.'C017') ACTYPE()=8
IF(AC(I).EQ.'K135") ACTYPE()=9
TOTMSN=TOTMSN+1
GTIME(I)=GRND(ACTYPE())/24.0
RON(I)=REMAIN(ACTYPE(D))/24.0
ACCAP(I)=CAP(ACTYPE(D)
IFMMSNCOD(I).NE.'F') MSNCOD()="C'

* THE FOLLOWING LOOP COUNTS THE NUMBER OF MISSIONS. THIS VALUE
* WILL BE THE TOP LINE OF THE OUTPUT.

DO 100 J=1,ROUCNT
IF(ROUTE().EQ.ROUNUM(J)) THEN
MSNCNT=MSNCNT+1 "
GOTO 80
ENDIF
100  CONTIN!E
80 CONTINUE
90 CONTINUE

* THE FOLLOWING LOOPS COMBINE THE ABOVE INFORMATION INTO
*  ‘schedule.dat’.

WRITE(S,*)MSNCNT
DO 110 1=1,TOTMSN
NODENUM=0
DO 120 J=1,ROUCNT

114




IF(ROUTE(I).EQ.ROUNUM(J)) THEN
DO 130 K=1,20
NODENUM=NODENUM+1
ICAO(NODENUM)=STA( K)
IF(STATYP(J,K).NE.' ‘. AND.STATYP(J,K).NE.'1’') THEN

* THE FLYING TIME IS DEFAULTED TO .3 DAYS. SOME LEGS DO NOT APPEAR

* INFLY.DAT, SO A DEFAULT VALUE MUST BE USED.

FLYTIME=.3
DO 140 M=1,LEG
IF((ICAO(NODENUM).EQ.BASE2(M)).AND.
C (ICAO(NODENUM-1).EQ.BASE1(M)))) THEN
FLYTIME =(FLY(M)*SPEED(ACTYPE()))/24.0
ENDIF
140 CONTINUE
IF(FLYTIME.EQ..3) THEN
DO 150 M=1,LEG
IF((ICAO(NODENUM .EQ.BASE1(M)).AND.
C (ICAO(NODENUM-1).EQ.BASE2(M)))) THEN
FLYTIME =(FLY(M)*SPEED(ACTYPE(1)))/24.0
ENDIF
150 CONTINUE
ENDIF
c IF(FLYTIME.EQ..3) THEN
WRITE(*,*)'CHECK ROUTE ',ROUTE(0)
c ENDIF
ENDIF
IFSTATYP(,K).EQ.'1') THEN
TIME(NODENUM)=START(I)
ELSE
IF(STATYP( ,K).EQ.'9') THEN
TIME(NODENUM)=TIME(NODENUM-1)+FLYTIME

©

*  THIS SECTION WRITES TO THE OUTPUT FILE.

WRITE(S,155)NODENUM,AC(I),ACCAP(),MSNCOD(I)
155 FORMAT(3,1X,A4,F5.1,2X,A1)
DO 160 L=1,NODENUM
WRITE(S,*)ICAO(L), TIME(L)
160 CONTINUE
ELSE
IF(STATYP(J ,K).EQ.'4') THEN
TIME(NODENUM) =TIME(NODENUM-1)+FLYTIME
NODENUM=NODENUM+1
TIME(NODENUM)=TIME(NODENUM-1)+GTIME(I)
ICAO(NODENUM)=STA(J,K)
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ELSE
IF(STATYP(J K).EQ.'6') THEN
TIME(NODENUM) =TIME(NODENUM-1)+FLYTIME
NODENUM=NODENUM +1
TIME(NODENUM) =TIME(NODENUM-1)+RON(I)
ICAO(NODENUM)=STA(,K)
ENDIF
ENDIF
ENDIF
ENDIF
130 CONTINUE
ENDIF
120 CONTINUE
110 CONTINUE
WRITE(*,*)' PROGRAM COMPLETED'
END
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Appendix D: STORM/CARGPREP Schedule for the Sub-Problem

This appendix is an extract of the output file, "schedule.raw” generated by the STORM
and CARGPREP models. The first column is the number of the route to be flown by the
aircraft in column 2. The final column is the start time of the mission (days). For example,
line 1 indicates that a COO0S is to fly a mission along route 19 beginning at the 0.1 day point in
the planning horizon.

19 C005 0.1
19 C00s 15.1
23 C0o05 1.2
37 C005 2.3
56 C005 3.4
58 C005 4.5
58 C005 12.0
58 C005 19.5
58 C005 27.0

252 KC10 3.3
252 KC10 5.6
252 KC10 7.9
252 KC10 10.2
252 KC10 125
252 KC10 14.8
252 KC10 17.1
252 KC10 19.5
252 KC10 21.8
252 KC10 24.1
252 KC10 26.4
252 KC10 28.7
252 KC10 1.0
253 KC10 4.4
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Appendix E: Aircraft Capacities and Ground/RON Times

This appendix shows the conteats of “jet.dat”, containing aircraft information which
was used in the program "makesked.f” (Appendix C). For lines 2 - 9, the columns of interest
are columns 3 and 4. Column 3 is the speed conversion factor. Because all flight times in file
"fly.dat" (Appendix F) are given in terms of the C141, the speed conversion factor was needed
to adjust flying times for the other aircraft. Column 4 is the capacity (tons) of each aircraft,
based on AMC/XPYR's use of 1.5 tons per pallet instead of 2.3 tons as stated in AFR 76-1.

For lines 10 - 17, column 5 is the authorized ground time (hours) and Column 6 is the
Remain-Over-Night (RON) time (hours) for the aircraft. The aircraft follow the order in lines
2 - 9. For example, line 10 corresponds to a C005, line 11 to a C141, etc.

8 175

20 Ccoos 097 54.00

30 Cil41 1.00 20.00

20 C130 1.39 9.00

10 DC08 0.93 27.00

15 DC10 0.92 45.00

10 B747 091 63.00

10 KC10 0.92 33.00

60 co17 097 28.00

0.00 4.25 4.25 4.25 4.25 1825 4.25 4.25
0.00 3.25 3.25 325 3.25 17.25  3.25 3.25
0.00 2.25 2.25 2.25 225 16.25 2.25 2.25
0.00 3.00 3.00 3.00 3.00 16.00 3.00 3.00
0.00 4.00 4.00 400 4.00 16.00 4.00 4.00
0.00 4.00 400 4.00 4.00 16.00 4.00 4.00
0.00 3.25 3.25 3.25 3.25 17.25  3.25 3.25
0.00 3.25 3.25 3.25 3.25 1725 3.25 3.25
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Appendix F: Flying Times Between Airbases

This appeadix is an extract of the file "fly.dat", which contains the times required for a
C141 to fly from the airbase in column 1 to the airbase in column 2. This data was used in
*makesked.f" to generate the times associated with each airbase in the initial schedule. Note
that flight times are not necessarily commutative. For example, a flight from KDOV (Dover
AFB) to EDAR (Ramstein AB) requires 8.2 hours, while the flight from EDAR to KDOV is
9.5 hours.

KDOVKCHS 151515151515 15
KDOVKTIK 3.3 3.3 33 33 33 33 33
KDOV KWRI 0.7 0.7 0.7 0.7 0.7 0.7 0.7
KDOV EDAR 8.2 8.2 8.2 8.2 8.2 8.2 8.2

KDOVEDAF 79 7979797979 79
KDOV EDAF 8.2 8.2 8.2 8.2 8.2 8.2 8.2
KDOVEGUN 7.1 7.1 7.1 7.1 7.1 7.1 7.1

87878 78 78 7.8

KDOV LETO 7.8 7.

EDARKDOV 9.5 9.5 9.5 95 9.5 95 95
EDARKWRI 9.6 9.6 9.6 9.6 9.6 9.6 9.6
EDAREGUN 15 15 1.5 1.5 15 15 15
EDAR LETO 2.6 2.6 2.6 2.6 2.6 2.6 2.6
EDARLPLA 4.6 4.6 46 4.6 46 4.6 4.6
EDARLIPA 151515151515 15
EDARLIRN 2.1 2.1 2.1 2.1 2.1 2.1 2.
EDARLIRP 29 29 29 29 29 29 2.
EDARLICZ 2.6 2.6 2.6 2.6 2.6 2.6 2.
EDARLTAG 4.4 44 44 44 44 44 44
EDARLLBG 4.3 43 43 43 43 43 43
EDARHECA 4.7 4.7 4.7 4.7 4.7 4.7 4.7

Oon

RPMBFIDG 7.6 76 7.6 7.6 7.6 7.6 7.6
RPMBRPMK 0.5 0.5 0.5 0.5 0.5 0.5 0.5
RPMB RITY 4.1 4.1 4.1 4.1 4.1 4.1 4.1
RPMB PGUA 3.8 3.8 3.8 3.8 3.8 3.8 3.8
RPMBRODN 24 24 24 24 2.4 2.4 24
VIBD FIDG 5.3 5.3 53 53 53 5.3 53
WSAPFIDG 5.0 5.0 5.0 5.0 5.0 5.0 5.0
WSAP RPMK 3.6 3.6 3.6 3.6 3.6 3.6 3.6




Appendix G: Routes in the E/SWA Sub-Problem

This appendix shows the file "route.dat”, which contains a list of the routes used as
input to "makesked.f". The first column is the route number. The remaining columns are the
ICAO designations of the airbases along the route. Appended to each ICAO is a numeric
suffix which identifies the airbase type. Suffix 1 indicates the origin airbase for the mission,
suffix 4 indicates that the aircraft will spend its authorized ground time at the airbase, suffix 6
indicates that the aircraft will remain at the airbase for its authorized RON time, and suffix 9
indicates the final destination of the mission.

3 EXXX1 KTIK4 CYQX4 EDAR4 EXXX9

56 KSUUI1 KTIK4 KDOV6 EDAF6 KDOV6 KTIK4 KSUU9

58 KSUUI1 KTIK4 KDOV6 EDAR6 KDOV6 KTIK4 KSUU9

59  KSUUI1 KTIK4 KDOV6 EGUN6 EDAR4 EDAF6 KCHS6 KTIK4 KSUU9

137 KXXX1 KTIK4 EDAF4 KDOV4 KTIK4 KXXX9

180 KDOV1 EDAF6 KDOV9

181  KDOV1 EDAR6 KDOV9

196 KCHS1 KNGU4 LPLA6 GOOY6 GLRB4 FZAA6 FTTJ4 FZAA6 GOOY4 LPLA6
KNGU4 KCHS9

200 KDOV1 EDAR6 OJAF6 EDAR6 KDOV9

202 KCHS1 KNGU4 BIKF6 EGUN4 KCHS9

203 KDOV1 KCHS4 KNGU4 BIKF6 EGUN4 KDOV9

216 KCHS1 KNGU4 LERTS6 LICZ4 OBBI4 OMFJ6 OBBI4 LICZ6 LERT4 LPLA6
KNGU4 KCHS9

224 KDOV1 EDAF6 OEDR4 EDAF6 KDOV9

225 KSUUI1 KTIK4 KWRI6 LPLA4 EDAF6 KWRI6 KTIK4 KSUU9

230 EDAF1 LETO4 LIPA6 EDAR4 EGUN4 EDAF9

231 EDAF1 EGUN4 EDARG6 LIPA4 LETO4 EDAF9

235 EDAF1 OKBK4 OEDR6 OERY4 EDAF9

237 EDAFI1 LTAG4 EDAF9

239 EDARI1 LTAG4 EDAR9

241 KDOV1 LETO6 KDOV9

242 KWRII LPLA6 KWRI9

249 EGUNI EDAR4 LIRP4 LIPA6 LETO4 EDAR4 EGUN9

251 EGUNI1 EDAF4 LIPA6 LGIR4 LCRA4 LTAG6 LCRA4 LGIR4 LIPA6 EDAF4
EGUN9

252 KDOV1 EDAR4 LTAG4 EDAR4 KDOV9

255 KDOV1 KNGU4 LERT6 OBBI4 LICZ6 LERT6 KNGU4 KDOV9

259  KCHS1 KNGU4 LERT6 LIRN4 LICZ6 LIRN4 LERT6 KNGU4 KCHS9

260 KCHS1 KNGU4 LERT6 LIRN4 LERT6 KNGU4 KCHS9

262 EDAF1 EGUN4 EDAR4 LIPA4 LETO4 EDAF4 LTAG6 EDAF4 LETO4 LIPA4
EDAR4 EGUN4 EDAF9

264 EDAFI1 LIRN4 LICZ4 LERTG6 LICZ4 LIRN4 EDAF9

265 KCHS1 KNGU4 LERT6 LIRN4 LICZ4 OBBI6 OMFJ4 OBBI4 LICZ6 LIRN4
LERT6 LPLA4 KNGU4 KCHS9
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266
269
270
271
292
293
294

EDAF1 LIRN4 LICZ4 LIRN4 EDAF9

KDOV1 EDAF4 OERY6 EDAF4 KDOV9

KWRI1 LPLA4 EDAR6 LPLA4 KWRI9

EDAF1 OEDR6 EDAF9

EDAF1 EDAR4 EDAF9

KDOV1 EDAR4 LLBG4 EDAR4 KDOV9

KNGU1 LETO4 LICZ4 HSSS4 HKNA4 LICZ4 LPLA4 KNGU9
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Appendix H: Commodities of the E/SWA Sub-Problem

This appendix is the file "cargo.dat”, which contains the cumulative amounts of the
commodities which arrive during the first week of the planning horizon. The first two
columns are the ICAO designations of the OD pair. The third column indicates the first week
of the planning horizon (1 equals week 2, 2 equals week 3, etc.). The final seven columns
represent the cumulative daily requirements. Each entry showing an inciease from the
previous day translates into a cargo generation node in the network.

EDAR KNGU 0 24 48 72 96 120 144 1.68
EDARLGIR 0 30 59 8 119 148 178 2.08
EDARLIRN 0 A8 37 S5 .13 92 110 1.28
EDAR OEDR 0 85 169 254 339 423 508 593
EGUN KNGU 0 78 156 234 3.12 390 4.68 5.46
EGUN LTAG 0 168 336 504 672 840 10.08 11.76
KCHS EDAF 0 d6 20 22 46 75 1.01 124
KDOVLGIR 0 31 37 37 713 L1 164 212
KDOV LIPA 0 624 1732 750 1465 23.05 32.91 42.58
KDOV OEDR 0 626 735 17153 147 23.14 33.04 42.75
KNGULIPA 0O 1.19 174 201 395 6.00 832 1050
KTIKLIPA 0 St 791 145 230 3.12 394
KTIKLTAG 0 83 124 147 235 373 506 6.39
KTIK OEDR 0 94 141 167 265 422 572 723
KTIK OERY 0 S50 75 89 142 226 3.07 3.87
LETOKDOV 0 8.19 1637 2456 32.75 4093 49.12 57.31
LETOKTIK 0 J7 154 231 3.08 38 462 539
LETOKWRI 0 1.16 232 348 464 580 69 8.12
LETO LERT 0 60 119 179 239 298 358 4.18
LETOLIRN 0 88 177 265 353 442 530 6.18
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Appendix I: Initial Schedule for the E/SWA Sub-Problem

This appendix is an extract of the file "schedule.dat”®, the initial schedule generated by
"makesked.f*. "Schedule.dat” is used within "iterate.f” to generate the mission airbase nodes
in the network. The first line indicates that there are 213 missions in the mission set. The rest
of the file consists of 213 sub-blocks, each representing one mission. The first line of the sub-
block shows the route number of the mission, the number of nodes on the mission, the aircraft
flying the mission, the capacity of the aircraft, and the type of channel mission (C =
requirements, F = frequency of visit). The remaining lines of the sub-block show the ICAO
designation of the airbase and its time (day) within the planning horizon.

213

056 12 C005 54.0 C
KSUU 3.40000
KTIK 3.52125
KTIK 3.69833
KDOV 3.81554
KDOV 4.57596
EDAF 4.90737
EDAF 5.66719
KDOV  6.06792
KDOV  6.82833
KTIK 6.96171
KTIK 7.13879
KSUU 7.28025
058 12 CO005 54.0 C
KSUU 4.50000
KTIK 4.62125
KTIK 4.79833
KDOV 491554
KDOV 5.675%6
EDAR 5.99525
EDAR 6.75567
KDOV 7.13963
KDOV 7.90004
KTIK 8.03342
KTIK 8.21050
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Appendix J: User-defined Parameters

This appendix contains a sample of input file "param.dat”, containing the parameters
which the user can change to enhance program performance. Following the sample file is a
discussion of the range of values the parameters may take.

100 MAXIT
25 MAXALT
10 MAXTRN

1 CARCRI
2 SORCRI
10 PASSES
2 TRNSHIP

0.00! EPSILON
0.0001 TIME EPSILON

MAXIT is the maximum number of iterations through the iterative improvement algorithm per
run of the program. The minimum value of this parameter is 1.

MAXALT is the maximum number of alternate paths considered by the shortest path
algorithm. Its minimum value is 0.

MAXTRN is the maximum number of transshipments allowed for a single piece of cargo. Its
minimum value is 0. While it has no upper bound, tests run with the E/SWA sub-problem
indicate that 10 is a realistic maximum.

CARCRI is the cargo priority, which determines the order in which cargo is flowed.
Acceptable values are 1 = default, 2 = FIFO, and 3 = largest to smallest.

SORCRI is the mission set sorting criteria, which determines the order in which the schedule
improvement algorithm examines the mission set. Acceptable values are 1 = default, 2 =
reverse of the order provided, 3 = descending order according to mission utilization, and 4 =
ascending order according to mission utilization.

PASSES is the maximum number of passes per iteration of the schedule improvement
algorithm. Its minimum value is 1. While it has no upper bound, tests run with the E/SWA
sub-problem indicate that 10 is a reasonable maximum.

TRNSHP is the transshipment policy. Acceptable values are 0 = no transshipments allowed, 1
= transshipments are allowed only at a pre-determined list of airbases, and 2 = transshipments
may occur at any airbase.

EPSILON and TIME EPSILON are used to prevent problems due to floating point arithmetic.
It is suggested that these remain unchanged.
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Appendix K: Approved Transshipment Bases for the E/SWA Sub-Problem

This appeandix contains the file "trnbases.dat”. One of the options for the user-defined
parameter setting transshipment policy is to allow transshipments to occur only at pre-
determined airbases. These airbases may be the only ones within the channel system equipped
to handle transshipmeats. The following is a list of those airbases for the E/SWA sub-
problem. The number on line 1 is the total number of approved transshipment bases followed
by their ICAO designations.

18
EDAF
EDAR
EGUN
KCHS
KDOV
KNGU
KSUU
LERT
LETO
LGIR
LICZ
LIPA
LIRN
LLBG
LTAG
OEDR
OERY
OJAF
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Appendix L: Mission Utilization Output

This appendix is an extract of an output file "postxxx.c”, containing mission utilization
information. For each mission a block is created showing the mission number, the route and
type of aircraft assigned to the mission, and the aircraft's capacity. Following this information
is the ordered list of airbases on the mission, with the utilization of the aircraft on the flight
into the airbase and the amount of flow on that flight. The utilization is the percentage of that
leg's capacity which was used. At the end of each mission block is a line showing the overall
mission utilization, which is a weighted value incorporating the individual legs' utilizations.

An output file like this is generated after every execution of the post-processing
subroutine (POSTPROC), numbered according to the iteration. For example, on the first
iteration, POSTPROC creates "post001.c".

UTILIZATION OF MISSIONS

UTILIZATION EQUALS THE PERCENTAGE OF A MISSION LEG
CAPACITY THAT IS USED.

ICAO UTIL FLOW

MISSION 1 (ROUTE = 56, ACFT = C005, CAPACITY = 54.0 TONS)
KSUU — —

KTIK 0.00 0.00

KDOV 0.00 0.00

EDAF 0.00 0.00

KDOV 0.00 0.00

KTIK 0.00 0.00

KSUU 0.00 0.00

OVERALL UTILIZATION ON THIS MISSION: 0.

MISSION 2 (ROUTE = 58, ACFT = C005, CAPACITY = 54.0 TONS)
KSUU - —_—

KTIK 0.00 0.00

KDOV 0.03 1.38

EDAR 0.00 0.00

KDOV 0.00 0.00

KTIK 0.00 0.00

KSUU 0.00 0.00

OVERALL UTILIZATION ON THIS MISSION:  2.46219E-03
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Appendix M: Sample Flow Pattern Output

This appendix is an extract of flow pattern output generated by the schedule
improvement subroutine within "iterate.f". An output file containing this information is
created after every execution of the flow and schedule improvement subroutines, numbered
according to the iteration. For example, on the first iteration the flow subroutine creates
"cflow001.c" and the schedule improvement algorithm creates "paths001.c”.

For each piece of cargo flowed a block is created showing that piece's time-in-system
(TIS), the amount of the flow (FLOW), the cost of the flow (WTIS), the number of
transshipments along the path, and the path it used. The path information contains the ICAO
designation of the node, the mission on which that node appears, the time associated with the
node, and the node number.

Following the block for the last piece of flowed cargo are cumulative totals for the
amount flowed, the CWTIS, and the amount of cargo reflowed in the schedule improvement
subroutine (this only appears in output created by the schedule improvement subroutine).
These are followed by distributions for the number of transshipments and time-in-system.

TIS: 3.54801 FLOW: 0.240000
COST OF THIS FLOW:  0.851522
NO. OF TRANSSHIPMENTS: 1

ICAO MSN NO. TIME NODE NUMBER
EDAR 0 0.00 1

EDAR 22 2.31 338
EDAF 22 234 339
EDAF 22 3.06 340
KCHS 22 3.50 341
KCHS 44 3.50 726
KNGU 4 3.55 727
KNGU 0 0.00 2282

TIS: 0.726650 FLOW: 0.880000
COST OF THIS FLOW:  0.639452
NO. OF TRANSSHIPMENTS: 1

ICAO MSN NO. TIME NODE NUMBER
LETO 0 3.00 136
LETO 102 3.26 1334
EDAF 102 3.37 1335
EDAF 20 3.64 314
LIRN 20 3.73 315

LIRN 0 0.00 2284
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TOTAL CARGO FLOWED (TONS):  191.000
TOTAL COST OF THIS FLOW:  297.106
TOTAL CARGO REFLOWED (TONS):  6.37000
TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 6
1 9%

TIME-IN-SYSTEM DISTRIBUTION

DAYS TONNAGE

0-1 29.29
1-2 125.45
2-3 26.74
3-4 6.32

45 3.20

128




Appendix N: Results of Each Iteration

This appendix is the file "run.c”, a log file which is created every time the iterative
improvement algorithm is run. At the beginning of the file is a listing of the parameters used
in the run. Then, for each iteration, the following are presented for the flow and schedule
improvement algorithms: 1) a transshipment distribution for the paths used in the flow, 2) a
TIS distribution for the cargo which was flowed, 3) the total amount of cargo flowed, and 4)
the CWTIS of the flow pattern. The amount of cargo flowed and the CWTIS are displayed
immediately after the TIS distribution. Note that CARGFLOW refers to the cargo flow
algorithm and MODMSN refers to the schedule improvement algorithm.

Parameters:

MAXIT
MAXALT
MAXTRN
CARCRI
SORCRI
PASSES
TRNSHIP

0.001 EPSILON

.0001 TIME EPSILON

[ S I N )

CARGFLOW CALLED
TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

1 93
T.1.S. DISTRIBUTION

DAYS TONS

0-1 20.2800
1- 2 116.280
2-3 29.9700
3- 4 18.5700
45 3.75000
5-6 1.31000
6- 7 0.840000

191.000 362.439
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MODMSN CALLED
TOTAL CARGO REFLOWED (TONS):  6.37000

TRANSSHIPMENT DISTRIBUTION

NUMBER OCCURENCES

0 6
1 94
TIME-IN-SYSTEM DISTRIBUTION

DAYS TONNAGE

0-1 29.29

1-2 12545

2-3  26.74

3-4  6.32

45 320

191.000 297.106

ITERATION 1 COMPLETED.

CARGFLOW CALLED

TRANSSHIPMENT DISTRIBUTION
NUMBER OCCURENCES
1 98

T.L.S. DISTRIBUTION

DAYS TONS

0-1 40.0400
1- 2 119.860
2-3 30.2900
3-4 6.08000
4 5 5.40000

201.670 310.503
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Appendix O: Test Runs

This appendix contains a complete list of the runs used for testing.

Run Final Final
F 4 MAXTRN | CARCRI | SORCRI | PASSES | REFLOW | Flow | CWTIS
1 1 1 )] 10 on 211,93
2 2 1 1 10 on | 22693 | 25498

3 3 1 1 10 _on 22999 | 258,90
4 10 1 1 10 on 229.99 | 232,79
5 1 1 2 10 on 203.19 | 238.13
6 2 1 2 10 on |
1 3 1 2 10 on 22999 | 241.17
8 10 )| 2 10 on 22099 | 231.44
9 1 1 3 10 on 120278 1 232.49
10 2 1 3 10 _on 226.45 1 281.74
B 3 1 3 10 on 229.99 | 261.48 |
12 10 1 3 10 on 122999 | 257.18
13 1 1 4 10 on 212.07 | 241.72
14 2 1 4 10 on 22547 | 252.15
15 3 1 4 10 —on 22999 | 242 30
16 10 1 4 10 on 22999 | 23549
17 1 1 1 10 off | 260.62
18 2 | 1 10 _off 227.34 | 310.97
19 3 1 1 10 off 22099 | 284.89
20 10 1 1 10 off 22999 | 284 .89
21 1 1 2 10 off 191..00 | 260.62 |
22 2 1 2 10 off 227.34 | 31097
23 3 1 2 10 off 229.99 | 284.89
24 10 1 2 10 off 22999 | 284 89
25 1 1 3 10 off 19100 | 260.62 |
26 2 1 3 10 off 227.34 1 310,97
27 3 1 3 10 off 229,99 | 284.89
28 10 1 3 10 off 229.99 | 284.89
29 1 1 4 10 _Ooff | ]
30 2 1 4 10 _off 227.34 | 31097
31 3 1 4 10 off 22999 | 284 89
32 10 1 4 10 off 229.99 | 284.89
33 10 1 1 10 on 2115.1 1 18151.0
34 10 2 1 10 on 22089 | 21974.0
35 10 3 1 10 on 2227.7 120170.0

In all test runs, the following parameters remained constant:

MAXIT = 100
MAXALT = 25
TRNSHP = 2

EPSILON = .001

TIME EPSILON = .0001
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Recall that:

MAXTRN = the maximum number of transshipments allowed per piece of cargo flowed
CARCRI = the cargo flow priority

SORCRI = the mission set sorting criteria

PASSES = the number of passes per iteration of the schedule improvement algorithm
REFLOW = reflow mechanism

TRNSHP = the transshipment policy
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Appendix P: Output Conversion Subroutine

This appendix is the FORTRAN program “makeraw.f", which converts the schedule
created by "iterate.f" back into the format required for validation by CARGOSIM.

PROGRAM MAKERAW
*  THIS PROGRAM TAKES THE SCHEDULE CREATED BY THE SCHEDULE
* IMPROVEMENT ALGORITHM IN THE IIA AND CONVERTS IT BACK INTO THE
*  FORMAT OF 'schedule.raw' FOR VALIDATION IN CARGOSIM
REAL TIME
INTEGER ROUTE,NODES
CHARACTER*4 ACFT,ICAO
OPEN(UNIT = 1, FILE = 'newsched.dat',.STATUS = 'OLD',FORM = 'FORMATTED")
OPEN(UNIT =2,FILE='newsched.raw’,STATUS ="UNKNOWN’,
c FORM="FORMATTED')
READ(1,*)
5 READ(1,*,END=30)ROUTE,NODES,ACFT
READ(1,*,END=30)ICAO,TIME
WRITE(2,10)ROUTE,ACFT,TIME
10 FORMAT(3,3X,A4,3X,F7.4)
DO 20 I=1,NODES-1
READ(1,*,END=30)
20 CONTINUE
GOTO 5
30 WRITE(*,*)'PROGRAM COMPLETED'

END
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